## CME 100: Vector Calculus for Engineers (ENGR 154)

Computation and visualization using MATLAB. Differential vector calculus: vector-valued functions, analytic geometry in space, functions of several variables, partial derivatives, gradient, linearization, unconstrained maxima and minima, Lagrange multipliers and applications to trajectory simulation, least squares, and numerical optimization. Introduction to linear algebra: matrix operations, systems of algebraic equations with applications to coordinate transformations and equilibrium problems. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Numerous examples and applications drawn from classical mechanics, fluid dynamics and electromagnetism. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Spr, Sum
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100 »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)

## CME 100A: Vector Calculus for Engineers, ACE

Students attend
CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: must be enrolled in the regular
CME100-01 or 02. Application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Spr, Sum
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100A »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)

## CME 102: Ordinary Differential Equations for Engineers (ENGR 155A)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications are presented. For analytical methods students learn to solve linear and non-linear first order ODEs; linear second order ODEs; and Laplace transforms. Numerical methods using MATLAB programming tool kit are also introduced to solve various types of ODEs including: first and second order ODEs, higher order ODEs, systems of ODEs, initial and boundary value problems, finite differences, and multi-step methods. This also includes accuracy and linear stability analyses of various numerical algorithms which are essential tools for the modern engineer. This class is foundational for professional careers in engineering and as a preparation for more advanced classes at the undergraduate and graduate levels. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Win, Spr, Sum
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

## CME 102A: Ordinary Differential Equations for Engineers, ACE

Students attend
CME102/ENGR155A lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME102) prior to submitting application at:n
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Win, Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Le, H. (PI)

## CME 104: Linear Algebra and Partial Differential Equations for Engineers (ENGR 155B)

Linear algebra: systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, LU factorization, eigensystem analysis, normal modes. Linear independence, vector spaces, subspaces and basis. Numerical analysis applied to structural equilibrium problems, electrical networks, and dynamic systems. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Applications in heat and mass transport, mechanical vibration and acoustic waves, transmission lines, and fluid mechanics. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications drawn from a variety of engineering fields. Prerequisite:
CME102/
ENGR155A.

Terms: Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)

## CME 104A: Linear Algebra and Partial Differential Equations for Engineers, ACE

Students attend
CME104/ENGR155B lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME104) prior to submitting application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)

## CME 107: Introduction to Machine Learning (EE 104)

Introduction to machine learning. Formulation of supervised and unsupervised learning problems. Regression and classification. Data standardization and feature engineering. Loss function selection and its effect on learning. Regularization and its role in controlling complexity. Validation and overfitting. Robustness to outliers. Simple numerical implementation. Experiments on data from a wide variety of engineering and other disciplines. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:
ENGR 108;
EE 178 or
CS 109; CS106A or equivalent.

Terms: Spr
| Units: 3-5

Instructors:
Lall, S. (PI)

## CME 193: Introduction to Scientific Python

This short course runs for the first four weeks of the quarter. It is recommended for students who are familiar with programming at least at the level of CS106A and want to translate their programming knowledge to Python with the goal of becoming proficient in the scientific computing and data science stack. Lectures will be interactive with a focus on real world applications of scientific computing. Technologies covered include Numpy, SciPy, Pandas, Scikit-learn, and others. Topics will be chosen from Linear Algebra, Optimization, Machine Learning, and Data Science. Prior knowledge of programming will be assumed, and some familiarity with Python is helpful, but not mandatory.

Terms: Aut, Win, Spr
| Units: 1

Instructors:
Jambulapati, A. (PI)

## CME 195: Introduction to R (STATS 195)

This short course runs for four weeks and is offered in fall and spring. It is recommended for students who want to use R in statistics, science or engineering courses, and for students who want to learn the basics of data science with R. The goal of the short course is to familiarize students with some of the most important R tools for data analysis. Lectures will focus on learning by example and assignments will be application-driven. No prior programming experience is assumed.

Terms: Spr
| Units: 1

## CME 206: Introduction to Numerical Methods for Engineering (ME 300C)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites:
CME 200/
ME 300A,
CME 204/
ME 300B.

Terms: Spr
| Units: 3

Filter Results: