2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 10 of 29 results for: CHEM ; Currently searching winter courses. You can expand your search to include all quarters

CHEM 29N: Chemistry in the Kitchen

This course examines the chemistry relevant to food and drink preparation, both in homes and in restaurants, which makes what we consume more pleasurable. Good cooking is more often considered an art rather than a science, but a small bit of understanding goes a long way to make the preparation and consumption of food and drink more enjoyable. The intention is to have demonstrations and tastings as a part of every class meeting. We will examine some rather familiar items in this course: eggs, dairy products, meats, breads, vegetables, pastries, and carbonated beverages. We shall playfully explore the chemistry that turns food into meals. A high-school chemistry background is assumed; bring to class a good appetite and a healthy curiosity.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: Zare, R. (PI)

CHEM 31B: Chemical Principles II

Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be p more »
Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be placed on acid/base equilibria , allowing students to explore the role of buffers and antacids in our bodies, as well as ocean acidification and the impact on coral reefs. Students will then bring together concepts from both kinetics and equilibrium, in a deeper discussion of thermodynamics, to understand what ultimately influences the spontaneity of a reaction. Students will build a relationship between free energy, temperature, and equilibrium constants to be able to calculate the free energy of a reaction and understand how processes in our body are coupled to harness excess free energy to do useful work. Finally we will explore how we harness work from redox reactions, building both voltaic cells (i.e. batteries) and electrolytic cells in lab, and using reduction potentials to predict spontaneity and potential of a given reaction. We will look at the applications of redox chemistry in electric and fuel cell vehicles. The course's particular emphasis on understanding the driving forces of a reaction, especially the influence of thermodynamics versus kinetics, will prepare students for further study of predicting organic chemical reactivity and equilibria from structure in Chem 33. Prerequisite: Chem 31A.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

CHEM 33: Structure and Reactivity of Organic Molecules

An introduction to organic chemistry, the molecular foundation to understanding of life, medicine, imaging, energy, and material science. Students will learn structural and bonding models of organic molecules that provide insights into chemical, physical, and reactivity properties, in addition to their biological activities, collectively contributing to the molecularization and thus advancement of many science disciplines. Combining these models with kinetic and thermodynamic analyses allows molecular conversions to be rationalized. Translation of this knowledge to more complex systems enables the synthesis of novel molecules or materials that can positively impact our science, society and environment. A two-hour weekly lab section accompanies the course to introduce the techniques of separation and identification of organic compounds. Prerequisite: CHEM 31B or CHEM 31M
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

CHEM 90: Directed Instruction/Reading

Undergraduates pursue a reading program under supervision of a faculty member in Chemistry; may also involve participation in lab. Prerequisites: superior work in CHEM 31A, 31B, 31M, 31X, or 33; and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable 4 times (up to 8 units total)

CHEM 91: Exploring Chemical Research at Stanford

Preference to freshmen and sophomores. Department faculty describe their cutting-edge research and its applications.
Terms: Win | Units: 1

CHEM 121: Understanding the Natural and Unnatural World through Chemistry

Students enrolled in this course will appreciate the transformative power of molecular science on the modern world and how foundational knowledge of chemistry enables profound discoveries in biological, pharmaceutical, agrochemical, engineering, energy, and materials science research. This course integrates the lessons of CHEM 31 and CHEM 33 through an examination of the structure-function properties of carbon-based molecules. Specific emphasis is given to the chemistry of carbonyl- and amine-derived compounds, polyfunctionalized molecules, reaction kinetics and thermodynamics, mechanistic arrow-pushing, and retrosynthetic analysis. Students will be empowered with a conceptual understanding of chemical reactivity, physical organic chemistry, and the logic of chemical synthesis. The singular nature of molecular design and synthesis to make available functional molecules and materials will be revealed. A three-hour lab section provides hands on experience with modern chemical methods for preparative and analytical chemistry. Prerequisite CHEM 33 or co-requisite CHEM 100 (not required in AY 2020-21 )
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER: DB-NatSci

CHEM 123: Organic Polyfunctional Compounds

Analysis of molecular symmetry and spectroscopy, aromaticity, aromatic reactivity, heterocyclic chemistry, chemistry of peptides and DNA. Prerequisite: CHEM 121
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Kanan, M. (PI)

CHEM 124: Organic Chemistry Laboratory

This is a laboratory course that serves as a stepping stone toward independent research in organic chemistry. Through several 1-2 step syntheses, this course trains students on basic organic laboratory techniques on purification of products, including extraction, distillation, recrystallization, thin layer chromatography, and column chromatography, as well as characterization of product structures using IR, GC-MS, and NMR spectroscopy. This course reviews MS, IR, and 1H and 13C NMR spectroscopy knowledge from Chem 33 and 121 with an emphasis on the practical interpretation of spectra, so that students can become independent in using these techniques to identify the purity and structures of organic compounds.nPrerequisite: Chem 121. Corequisite: Chem 123.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Xia, Y. (PI)

CHEM 151: Inorganic Chemistry I

Bonding, stereochemical, and symmetry properties of discrete inorganic molecules are covered along with their mechanisms of ligand and electron exchange. Density function calculations are extensively used in these analyses in computer and problem set exercises. Prerequisites: CHEM 33.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 174: Electrochemical Measurements Lab (CHEM 274)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students assemble and use electrochemical cells including indicator, reference, working and counter electrodes, with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, potentiostats, galvanostats, and stationary and rotated disk electrodes. The later portion of the course will involve a student-generated project to experimentally characterize some electrochemical system. Prerequisites: CHEM 131 (formerly 134) and CHEM 171, MATH 51, PHYSICS 44 or equivalent.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Chidsey, C. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints