2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 10 of 18 results for: BIOMEDIN ; Currently searching spring courses. You can expand your search to include all quarters

BIOMEDIN 201: Biomedical Informatics Student Seminar

Participants report on recent articles from the Biomedical Informatics literature or their research projects. Goals are to teach critical reading of scientific papers and presentation skills. May be repeated three times for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 3 times (up to 3 units total)

BIOMEDIN 208: Clinical Informatics Literature Review Seminar

Weekly seminar series in which seminal literature and current publications in the field of clinical informatics are reviewed and discussed. Organized by the Stanford Clinical Informatics fellowship program. Topics include electronic health record design, implementation, and evaluation; patient engagement; provider satisfaction; and hot topics in clinical informatics. Limited enrollment.
Terms: Spr | Units: 1

BIOMEDIN 212: Introduction to Biomedical Informatics Research Methodology (BIOE 212, CS 272, GENE 212)

Capstone Biomedical Informatics (BMI) experience. Hands-on software building. Student teams conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Creating written proposals, peer review, providing status reports, and preparing final reports. Issues related to research reproducibility. Guest lectures from professional biomedical informatics systems builders on issues related to the process of project management. Software engineering basics. Because the team projects start in the first week of class, attendance that week is strongly recommended. Prerequisites: BIOMEDIN 210 or 214 or 215 or 217 or 260. Preference to BMI graduate students. Consent of instructor required.
Terms: Spr | Units: 3-5

BIOMEDIN 222: Cloud Computing for Biology and Healthcare (CS 273C, GENE 222)

Big Data is radically transforming healthcare. To provide real-time personalized healthcare, we need hardware and software solutions that can efficiently store and process large-scale biomedical datasets. In this class, students will learn the concepts of cloud computing and parallel systems' architecture. This class prepares students to understand how to design parallel programs for computationally intensive medical applications and how to run these applications on computing frameworks such as Cloud Computing and High Performance Computing (HPC) systems. Prerequisites: familiarity with programming in Python and R.
Terms: Spr | Units: 3

BIOMEDIN 223: Deploying and Evaluating Fair AI in Healthcare

AI applications are proliferating throughout the healthcare system and stakeholders are faced with the opportunities and challenges of deploying these quickly evolving technologies. This course teaches the principles of AI evaluations in healthcare, provides a framework for deployment of AI in the healthcare system, reviews the regulatory environment, and discusses fundamental components used to evaluate the downstream effects of AI healthcare solutions, including biases and fairness. Prerequisites: CS106A; familiarity with statistics ( stats 202), BIOMED 215, or BIODS 220
Terms: Spr | Units: 3

BIOMEDIN 224: Principles of Pharmacogenomics (GENE 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

BIOMEDIN 226: Digital Health Practicum in a Health Care Delivery System

Practical experience implementing clinical informatics solutions with a focus on digital health in one of the largest healthcare delivery systems in the United States. Individual meetings with senior clinical informatics leaders to discuss elements of successful projects. Implementation opportunities include supporting the use of electronic health records, engagement of patients and providers via a personal health record, use of informatics to support patient service centers, and improvement of patient access to clinical data. Consent of course instructors required at least one quarter prior to student enrollment in course.
Terms: Aut, Win, Spr, Sum | Units: 2-3

BIOMEDIN 248: Clinical Trial Design in the Age of Precision Medicine and Health (BIODS 248, BIODS 248P, STATS 248)

Overview of requirements, designs, and statistical foundations for traditional Phase I, II, and III clinical trials for medical product approval and Phase IV postmarketing studies for safety evaluation. As these methods cost too much and take too much time in the era of precision medicine and precision health, this course then introduces innovative designs that have been developed for affordable clinical trials, which can be completed within reasonable time constraints and which have been encouraged by regulatory agencies. Prerequisites: Working knowledge of statistics and R.
Terms: Spr, Sum | Units: 3 | Repeatable 2 times (up to 6 units total)

BIOMEDIN 260: Computational Methods for Biomedical Image Analysis and Interpretation (CS 235, RAD 260)

The latest biological and medical imaging modalities and their applications in research and medicine. Focus is on computational analytic and interpretive approaches to optimize extraction and use of biological and clinical imaging data for diagnostic and therapeutic translational medical applications. Topics include major image databases, fundamental methods in image processing and quantitative extraction of image features, structured recording of image information including semantic features and ontologies, indexing, search and content-based image retrieval. Case studies include linking image data to genomic, phenotypic and clinical data, developing representations of image phenotypes for use in medical decision support and research applications and the role that biomedical imaging informatics plays in new questions in biomedical science. Includes a project. Enrollment for 3 units requires instructor consent. Prerequisites: programming ability at the level of CS 106A, familiarity with statistics, basic biology. Knowledge of Matlab or Python highly recommended.
Terms: Spr | Units: 3-4

BIOMEDIN 290: Biomedical Informatics Teaching Methods

Hands-on training in biomedical informatics pedagogy. Practical experience in pedagogical approaches, variously including didactic, inquiry, project, team, case, field, and/or problem-based approaches. Students create course content, including lectures, exercises, and assessments, and evaluate learning activities and outcomes. Prerequisite: instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable 2 times (up to 12 units total)
Instructors: Altman, R. (PI) ; Ashley, E. (PI) ; Bassik, M. (PI) ; Batzoglou, S. (PI) ; Bayati, M. (PI) ; Bejerano, G. (PI) ; Bhattacharya, J. (PI) ; Blish, C. (PI) ; Boahen, K. (PI) ; Brandeau, M. (PI) ; Bustamante, C. (PI) ; Butte, A. (PI) ; Chang, H. (PI) ; Cherry, J. (PI) ; Cohen, S. (PI) ; Covert, M. (PI) ; Curtis, C. (PI) ; Das, A. (PI) ; Das, R. (PI) ; Davis, R. (PI) ; Delp, S. (PI) ; Desai, M. (PI) ; Dill, D. (PI) ; Dumontier, M. (PI) ; Elias, J. (PI) ; Fagan, L. (PI) ; Feldman, M. (PI) ; Ferrell, J. (PI) ; Fraser, H. (PI) ; Gerritsen, M. (PI) ; Gevaert, O. (PI) ; Goldstein, M. (PI) ; Greenleaf, W. (PI) ; Guibas, L. (PI) ; Hastie, T. (PI) ; Hlatky, M. (PI) ; Holmes, S. (PI) ; Ji, H. (PI) ; Karp, P. (PI) ; Khatri, P. (PI) ; Kim, S. (PI) ; Kirkegaard, K. (PI) ; Klein, T. (PI) ; Koller, D. (PI) ; Krummel, T. (PI) ; Kundaje, A. (PI) ; Levitt, M. (PI) ; Levitt, R. (PI) ; Li, J. (PI) ; Longhurst, C. (PI) ; Lowe, H. (PI) ; Lungren, M. (PI) ; Mallick, P. (PI) ; Manning, C. (PI) ; McAdams, H. (PI) ; Menon, V. (PI) ; Montgomery, S. (PI) ; Musen, M. (PI) ; Napel, S. (PI) ; Nolan, G. (PI) ; Olshen, R. (PI) ; Owen, A. (PI) ; Owens, D. (PI) ; Paik, D. (PI) ; Palacios, J. (PI) ; Pande, V. (PI) ; Petrov, D. (PI) ; Plevritis, S. (PI) ; Poldrack, R. (PI) ; Pritchard, J. (PI) ; Relman, D. (PI) ; Riedel-Kruse, I. (PI) ; Rivas, M. (PI) ; Rubin, D. (PI) ; Sabatti, C. (PI) ; Salzman, J. (PI) ; Shachter, R. (PI) ; Shafer, R. (PI) ; Shah, N. (PI) ; Sherlock, G. (PI) ; Sidow, A. (PI) ; Snyder, M. (PI) ; Tang, H. (PI) ; Taylor, C. (PI) ; Theriot, J. (PI) ; Tibshirani, R. (PI) ; Utz, P. (PI) ; Walker, M. (PI) ; Wall, D. (PI) ; Winograd, T. (PI) ; Wong, W. (PI) ; Xing, L. (PI) ; Zou, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints