2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
by subject...
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 10 of 50 results for: BIO ; Currently searching spring courses. You can expand your search to include all quarters

BIO 2N: Ecology and Evolution of Infectious Disease in a Changing World

This seminar will explore the ways in which anthropogenic change, climate change, habitat destruction, land use change, and species invasions effects the ecology and evolution of infectious diseases. Topics will include infectious diseases of humans, wildlife, livestock, and crops, effects of disease on threatened species, disease spillover, emerging diseases, and the role of disease in natural systems. Course will be taught through a combination of popular and scientific readings, discussion, and lecture. .
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Mordecai, E. (PI)

BIO 3: Frontiers in Marine Biology

An introduction to contemporary research in marine biology, including ecology, conservation biology, environmental toxicology, behavior, biomechanics, evolution, neurobiology, and molecular biology. Emphasis is on new discoveries and the technologies used to make them. Weekly lectures by faculty from the Hopkins Marine Station.
Terms: Aut, Spr | Units: 1
Instructors: Thompson, S. (PI)

BIO 3N: Views of a Changing Sea: Literature & Science

The state of a changing world ocean, particularly in the eastern Pacific, will be examined through historical and contemporary fiction, non-fiction and scientific publications. Issues will include harvest and mariculture fisheries, land-sea interactions and oceanic climate change in both surface and deep waters.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-A-II
Instructors: Gilly, W. (PI)

BIO 24N: Visions of Paradise: Garden Design

Through literature readings and field trips to local gardens learn the principles and esthetics of classic garden designs: Italian Renaissance, botanical teaching, Japanese, English cottage, and others. Design a personal vision of paradise with details of species, visual and scent impact, water features, and hardscape. Open your eyes to a new appreciation of the world of plants and learn some physiology and genetics that explains the specific properties of individual species.
Terms: Spr | Units: 3
Instructors: Walbot, V. (PI)

BIO 25Q: Cystic fibrosis: from medical conundrum to precision medicine success story

The class will explore cystic fibrosis (CF), the most prevalent fatal genetic disease in the US, as a scientific and medical whodunit. Through reading and discussion of medical and scientific literature, we will tackle questions that include: how was life expectancy with CF increased from weeks to decades without understanding the disease mechanism? Why is the disease so prevalent? Is there an advantage to being a carrier? Is CF a single disease or a continuum of physiological variation ¿or- what is a disease? How did research into CF lead to discovery of the underlying cause of most other genetic diseases as well?nnThrough critical reading of the scientific and medical literature, class discussion, field trips and meetings with genetic counselors, caregivers, patients, physicians and researchers, we will work to build a deep understanding of this disease, from the biochemical basis to the current controversies over pathogenic mechanisms, treatment strategies and the ethics and economics of genetic testing and astronomical drug costs.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Kopito, R. (PI)

BIO 47: Introduction to Research in Ecology and Evolutionary Biology

The goal of this course is to develop an understanding of how to conduct biological research, using a topic in Ecology, Evolutionary Biology, and Plant Biology as a practical example. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for field- and lab- based data collection, analyzing data using appropriate statistical methods and finally writing and sharing the results. To build these skills, this course focuses on nectar microbes at Stanfords nearby Jasper Ridge Biological Preserve. Students, working in teams, will develop novel research hypotheses and do the necessary data analyses to test these hypotheses. The capstone of the course is a research paper written in the style of a peer-reviewed journal article as well as an oral defense of students research findings. Because the course will be offered online this year, we will analyze the data collected in previous years rather than conduct field and lab experiments in person. Although there are no pre-requisites to enroll in the class, it will be helpful if you have already taken BIO 81 or are concurrently enrolled in or have already taken the relevant HumBio core class. Note: Satisfies WIM in Biology.
Terms: Spr | Units: 4

BIO 86: Cell Biology

This course will focus on the basic structures inside cells and how they execute cellular functions. Topics include organelles, membrane trafficking, the cytoskeleton, cell division, and signal transduction. Classic and recent primary literature will be incorporated into lectures with an emphasis on state of the art experimental approaches. Prerequisites: BIO 83 is highly recommended.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA

BIO 89SI: Evolutionary Medicine

Why are body systems prone to disease? This course will explore theories about the evolutionary basis of diseases, including cancer, diabetes, and psychiatric disease. Students with a background in genetics, physiology, and evolution will synthesize these fields to better understand human health and disease. The course will involve readings from and discussions about the primary literature.
Terms: Spr | Units: 2

BIO 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (EARTHSYS 105B)

Ecology and Natural History of Jasper Ridge Biological Preserve an upper-division course, aims to help students learn ecology and natural history using a living laboratory, the Jasper Ridge Preserve. The course's central goal is that, as a community of learning, we examine via introductory discussions, followed by hands-on experiences in the field, the scientific basis of: ecological research, archaeology, edaphology, geology, hydrology, species interactions, land management, and multidisciplinary environmental education. The 10 sessions that compose the academic program are led by the instructors, faculty (world-experts on the themes of each session), and JRBP staff. In addition, this class trains students to become JRBP Docents that therefore join the Jasper Ridge education affiliates community. After completing this course, and as new affiliates of Jasper Ridge, participants will be able to lead research-focused educational tours, assist with classes and research, and attend continuing education activities available to members of the JRBP community.
Terms: Spr | Units: 4

BIO 109B: Advances in Therapeutic Development: Neuronal Signaling and Immunology (BIOC 109B)

This is a seminar course focused on teaching students about novel research and applications in the fields of neuroscience and immunology. The course will cover topics that range from the neuronal pathways in opioid addiction and the mechanics of pain, to advances in immunotherapy. Students will engage with diverse material from leading neuroscience and cancer immunotherapy experts in the Bay Area. Guest lecturers will visit from both academia and neighboring pharmaceutical/biotechnology companies. Active participation is required. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program, but not both.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints