2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 14 results for: APPPHYS

APPPHYS 201: Electrons and Photons (PHOTON 201)

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and special relativity. Interaction of electrons with intense electromagnetic fields from microwaves to x- ray, including electron accelerators, x-ray lasers and synchrotron light sources, attosecond laser-atom interactions, and x-ray matter interactions. Mechanisms of radiation, free-electron lasing, and advanced techniques for generating ultrashort brilliant pulses. Characterization of electronic properties of advanced materials, prospects for single-molecule structure determination using x-ray lasers, and imaging attosecond molecular dynamics.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 223: Stochastic and Nonlinear Dynamics (BIO 223, BIOE 213)

Theoretical analysis of dynamical processes: dynamical systems, stochastic processes, and spatiotemporal dynamics. Motivations and applications from biology and physics. Emphasis is on methods including qualitative approaches, asymptotics, and multiple scale analysis. Prerequisites: ordinary and partial differential equations, complex analysis, and probability or statistical physics.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fisher, D. (PI)

APPPHYS 225: Probability and Quantum Mechanics

Structure of quantum theory emphasizing states, measurements, and probabilistic modeling. Generalized quantum measurement theory; parallels between classical and quantum probability; conditional expectation in the Schrödinger and Heisenberg pictures; covariance with respect to symmetry groups; reference frames and super-selection rules. Classical versus quantum correlations; nonlocal aspects of quantum probability; axiomatic approaches to interpretation. Prerequisites: undergraduate quantum mechanics, linear algebra, and basic probability and statistics.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Mabuchi, H. (PI)

APPPHYS 232: Advanced Imaging Lab in Biophysics (BIO 132, BIO 232, BIOPHYS 232, GENE 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, microendoscopy, and optical trapping. Limited enrollment. Recommended: basic physics, basic cell biology, and consent of instructor.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

APPPHYS 270: Magnetism and Long Range Order in Solids

Cooperative effects in solids. Topics include the origin of magnetism in solids, crystal electric field effects and anisotropy, exchange, phase transitions and long-range order, ferromagnetism, antiferromagnetism, metamagnetism, density waves and superconductivity. Emphasis is on archetypal materials. Prerequisite: PHYSICS 172 or MATSCI 209, or equivalent introductory condensed matter physics course.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fisher, I. (PI)

APPPHYS 272: Solid State Physics (PHYSICS 172)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 293: Theoretical Neuroscience (PSYCH 242)

Survey of advances in the theory of neural networks, mainly (but not solely) focused on results of relevance to theoretical neuroscience.Synthesizing a variety of recent advances that potentially constitute the outlines of a theory for understanding when a given neural network architecture will work well on various classes of modern recognition and classification tasks, both from a representational expressivity and a learning efficiency point of view. Discussion of results in the neurally-plausible approximation of back propagation, theory of spiking neural networks, the relationship between network and task dimensionality, and network state coarse-graining. Exploration of estimation theory for various typical methods of mapping neural network models to neuroscience data, surveying and analyzing recent approaches from both sensory and motor areas in a variety of species. Prerequisites: calculus, linear algebra, and basic probability theory, or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 315: Methods in Computational Biology (BIOPHYS 315)

Methods of bioinformatics and biomolecular modeling from the standpoint of biophysical chemistry. Methods of genome analysis; cluster analysis, phylogenetic trees, microarrays; protein, RNA and DNA structure and dynamics, structural and functional homology; protein-protein interactions and cellular networks; molecular dynamics methods using massively parallel algorithms.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Doniach, S. (PI)

APPPHYS 322: Advanced Topics in x-ray scattering (PHOTON 322)

This course covers advanced topics in x-ray scattering including: diffuse scattering from static and dynamic disorder such as from defects or phonons; inelastic methods such as x-ray Raman and Compton scattering for measuring electronic structure and elementary excitations; and inelastic scattering in the time and frequency domain. Course combines lectures on basic principles with a review of foundational and current literature. May be repeat for credit.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints