2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 10 of 25 results for: AA ; Currently searching winter courses. You can expand your search to include all quarters

AA 102: Introduction to Applied Aerodynamics

This course explores the fundamentals of the behavior of aerodynamic surfaces (airfoils, wings, bodies) immersed in a fluid across all speed regimes (from subsonic to supersonic/hypersonic). We will cover airfoil theory (subsonic and supersonic), wing theory, and introduction to viscous flows and both laminar and turbulent boundary layers, and the topic of flow transition. At the completion of this course, students will be able to understand and predict the forces and movements generated by aerodynamic configurations of interest. Assignments require a basic introductory knowledge of MATLAB or another suitable programming language. Prerequisites: CME 100 and CME 102 (or equivalent), PHYS 41, AA 100, and AA 101 or ME 70.
Terms: Win | Units: 3

AA 113: Aerospace Computational Science

Computational methods are pervasive in analysis, design and optimization of aerospace systems. This course introduces the fundamental concepts underlying aerospace computational science. Starting from the concepts of meshes, elements and point clouds, interpolation, quadrature and time integration, the techniques of finite difference, finite volume and finite element discretization of general PDE problems, and analysis of the accuracy, consistency and stability of discretized problems including treatment of boundary conditions are developed. In depth applications to computations of ideal subsonic, transonic and supersonic flows, and viscous internal and external flow with a turbulence model are introduced. Through the use of commercial and research software (ANSYS Fluent, SU2 and AERO Suite) the student is exposed to the use of computational tools for solving practical aerospace engineering problems. The course culminates with the treatment of multidisciplinary aerospace problems invol more »
Computational methods are pervasive in analysis, design and optimization of aerospace systems. This course introduces the fundamental concepts underlying aerospace computational science. Starting from the concepts of meshes, elements and point clouds, interpolation, quadrature and time integration, the techniques of finite difference, finite volume and finite element discretization of general PDE problems, and analysis of the accuracy, consistency and stability of discretized problems including treatment of boundary conditions are developed. In depth applications to computations of ideal subsonic, transonic and supersonic flows, and viscous internal and external flow with a turbulence model are introduced. Through the use of commercial and research software (ANSYS Fluent, SU2 and AERO Suite) the student is exposed to the use of computational tools for solving practical aerospace engineering problems. The course culminates with the treatment of multidisciplinary aerospace problems involving coupling across more than one discipline, such as aero-thermal analysis (for hypersonic vehicle performance analysis or gas turbine blade cooling), fluid-structure interaction problems (such as flutter or flapping wing aeroelastic performance), and aeroacoustics (such as jet noise for next generation commercial supersonic transport or noise radiation from multi-rotor urban air mobility platform). Students are expected to pursue significant computational projects in two-person teams. nPrerequisites: CME102, CME104 (multivariable calculus, linear algebra, ODEs and some PDEs), ENGR 14, ME 30, ME70, and Recommended courses: AA102, AA103.
Terms: Win | Units: 3
Instructors: Lele, S. (PI)

AA 120Q: Building Trust in Autonomy

Major advances in both hardware and software have accelerated the development of autonomous systems that have the potential to bring significant benefits to society. Google, Tesla, and a host of other companies are building autonomous vehicles that can improve safety and provide flexible mobility options for those who cannot drive themselves. On the aviation side, the past few years have seen the proliferation of unmanned aircraft that have the potential to deliver medicine and monitor agricultural crops autonomously. In the financial domain, a significant portion of stock trades are performed using automated trading algorithms at a frequency not possible by human traders. How do we build these systems that drive our cars, fly our planes, and invest our money? How do we develop trust in these systems? What is the societal impact on increased levels of autonomy?
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

AA 136A: Spacecraft Design (AA 236A)

The design and implementation of unmanned spacecraft and spacecraft subsystems emphasizing identification of design drivers, current design methods, hands-on experience. The focus will be on the emerging nano-satellite platforms. For 2021, each student will have a CubeSat kit from which practical experiments and subsystems will be developed. Topics: spacecraft configuration design, modern project management approaches, mechanical design, structure and thermal subsystem design, attitude control, electric power, command and telemetry, design integration and operations ¿ as applied to current nano-satellite missions in Low Earth Orbit (LEO) and beyond.nnRequired for Aero/Astro majors. Intended for AA seniors and graduate students. For all other majors consent of instructor is required. Student's mailing address is required to ship CubeSat kit.
Terms: Win | Units: 3-5

AA 146A: Aircraft Design

Air Capstone I. Required for Aero/Astro majors. This course will be taught entirely online. This capstone design class allows students to apply knowledge from prior classes in a way that emphasizes the interactions between disciplines, and demonstrates how theoretical topics are synthesized in the practical design of an aircraft concept. In part A of this two quarter sequence, students will analyze an existing multi-rotor aircraft by examining, modeling, and critiquing its subsystems. Simultaneously, the students will design a new multi-rotor concept to optimize some design criteria (e.g. flight time, speed, agility, lifting capacity). The class will involve modeling the rigid body dynamics, the structure of the airframe, and aerodynamics of the rotors and airframe, as well as considering the electronics, motors, battery, sensors, and feedback control algorithms for the multi-rotor. Kits of materials and tools will be mailed to each student, enabling them to conduct hands-on exercises. nnnPrerequisites:nn1. Math 20, 21 or 41, 42 or equivalentsnn2. Elementary physics, and AA100 or equivalent classesnn3. Additional required AA courses dealing with aero, structures, and controls
Terms: Win | Units: 4
Instructors: Schwager, M. (PI)

AA 174B: Principles of Robot Autonomy II (AA 274B, CS 237B, EE 260B)

This course teaches advanced principles for endowing mobile autonomous robots with capabilities to autonomously learn new skills and to physically interact with the environment and with humans. It also provides an overview of different robot system architectures. Concepts that will be covered in the course are: Reinforcement Learning and its relationship to optimal control, contact and dynamics models for prehensile and non-prehensile robot manipulation, imitation learning and human intent inference, as well as different system architectures and their verification. Students will earn the theoretical foundations for these concepts and implement them on mobile manipulation platforms. In homeworks, the Robot Operating System (ROS) will be used extensively for demonstrations and hands-on activities. Prerequisites: CS106A or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or equivalent (for probability theory), and AA 171/274.
Terms: Win | Units: 3-4

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

AA 200: Applied Aerodynamics

Terms: Win | Units: 3
Instructors: Kroo, I. (PI)

AA 205: Rarefied and Ionized Gases (ME 362C)

Compressible, viscous, rarefied, and ionized gas flow models derived from kinetic theory, quantum mechanics, and statistical mechanics. Equilibrium properties and non-equilibrium processes via collisions and radiation. Monte Carlo collision models for non-equilibrium gas dynamics and partially ionized plasmas. Prerequisite: undergraduate courses in fluid mechanics and thermodynamics, ME 362A recommended but not required.
Terms: Win | Units: 3
Instructors: Hara, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints