2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 24 results for: AA ; Currently searching spring courses. You can expand your search to include all quarters

AA 109Q: Aerodynamics of Race Cars

Almost as soon as cars had been invented, races of various kinds were organized. In all its forms (open-wheel, touring car, sports car, production-car, one-make, stock car, etc.), car racing is today a very popular sport with a huge media coverage and significant commercial sponsorships. More importantly, it is a proving ground for new technologies and a battlefield for the giants of the automotive industry. While race car performance depends on elements such as engine power, chassis design, tire adhesion and of course, the driver, aerodynamics probably plays the most vital role in determining the performance and efficiency of a race car. Front and/or rear wings are visible on many of them. During this seminar, you will learn about many other critical components of a race car including diffusers and add-ons such as vortex generators and spoilers. You will also discover that due to the competitive nature of this sport and its associated short design cycles, engineering decisions about a more »
Almost as soon as cars had been invented, races of various kinds were organized. In all its forms (open-wheel, touring car, sports car, production-car, one-make, stock car, etc.), car racing is today a very popular sport with a huge media coverage and significant commercial sponsorships. More importantly, it is a proving ground for new technologies and a battlefield for the giants of the automotive industry. While race car performance depends on elements such as engine power, chassis design, tire adhesion and of course, the driver, aerodynamics probably plays the most vital role in determining the performance and efficiency of a race car. Front and/or rear wings are visible on many of them. During this seminar, you will learn about many other critical components of a race car including diffusers and add-ons such as vortex generators and spoilers. You will also discover that due to the competitive nature of this sport and its associated short design cycles, engineering decisions about a race car must rely on combined information from track, wind tunnel, and numerical computations. It is clear that airplanes fly on wings. However, when you have completed this seminar, you will be able to understand that cars fly on their tires. You will also be able to appreciate that aerodynamics is important not only for drag reduction, but also for increasing cornering speeds and lateral stability. You will be able to correlate between a race car shape and the aerodynamics effects intended for influencing performance. And if you have been a fan of the Ferrari 458 Italia, you will be able to figure out what that black moustache in the front of the car was for.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR
Instructors: Farhat, C. (PI)

AA 119N: 3D Printed Aerospace Structures

The demand for rapid prototyping of lightweight, complex, and low-cost structures has led the aerospace industry to leverage three-dimensional (3D) printing as a manufacturing technology. For example, the manufacture of aircraft engine components, unmanned aerial vehicle (UAV) wings, CubeSat parts, and satellite sub-systems have recently been realized with 3D printing and other additive manufacturing techniques. In this freshman seminar, a survey of state-of-the-art 3D printing processes will be reviewed and the process-dependent properties of 3D-printed materials and structures will be analyzed in detail. In addition, the advantages and disadvantages of this manufacturing approach will be debated during class! To give students exposure to 3D printing systems in action, tours of actual 3D printing facilities on campus (Stanford's Product Realization Laboratory), as well as in Silicon Valley (e.g., Made in Space) will be conducted.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR
Instructors: Senesky, D. (PI)

AA 146B: Aircraft Design Laboratory

Air Capstone II. Required for Aero/Astro majors. This capstone design class brings together the material from prior classes in a way that emphasizes the interactions between disciplines and demonstrates how some of the more theoretical topics are synthesized in practical design of an aircraft concept. The class will address a single problem developed by the faculty and staff. Students will spend two quarters designing a system that addresses the objectives and requirements posed at the beginning of the course sequence. They will work individually and in teams, focusing on some aspect of the problem but exposed to many different disciplines and challenges. The second quarter will focus on the demonstration of a physical system incorporating features of the design solution. This may be accomplished with a set of experiments or a flight demonstration involving data gathering and synthesis of work in a final report authored by the team.nnnPrerequisites: AA 146A
Terms: Spr | Units: 3
Instructors: Kroo, I. (PI)

AA 173: Flight Mechanics & Controls

The basic equations of motion for aircraft, and the design of automatic control systems for them. Non-linear and linearized longitudinal and lateral dynamics; linearized aerodynamics; natural modes of motion; autopilot design to enhance stability and to control the flight path. nnPrerequisites: E15, E105 and familiarity with Matlab.
Terms: Spr | Units: 3
Instructors: Gao, G. (PI)

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

AA 203: Optimal and Learning-based Control

Optimal control solution techniques for systems with known and unknown dynamics. Dynamic programming, Hamilton-Jacobi reachability, and direct and indirect methods for trajectory optimization. Introduction to model predictive control. Model-based reinforcement learning, and connections between modern reinforcement learning in continuous spaces and fundamental optimal control ideas.
Terms: Spr | Units: 3

AA 204: Spacecraft Electric Propulsion

The fundamentals of electric propulsion for spacecraft, which exists at the junction of traditional fluid dynamics, plasma physics, and aerospace engineering. The design and physics of electrothermal, electrostatic, and electromagnetic propulsion devices. Prerequisites: prior familiarity and experience with electromagnetism (Maxwell's equations, Ohm's law); fluid dynamics (fluid equations, choked flow, nozzles, Mach number); chemistry (stoichiometry, heat of formation, heat of reaction); and orbital dynamics (rocket equation, thrust, specific impulse, delta-v).
Terms: Spr | Units: 3
Instructors: Hara, K. (PI)

AA 218: Introduction to Symmetry Analysis

Methods of symmetry analysis and their use in the reduction and simplification of physical problems. Topics: dimensional analysis, phase-space analysis of autonomous systems of ordinary differential equations, use of Lie groups to reduce the order of nonlinear ODEs and to generate integrating factors, use of Lie groups to reduce the dimension of partial differential equations and to generate similarity variables, exact solutions of nonlinear PDEs generated from groups. Mathematica-based software developed by the instructor is used for finding invariant groups of ODEs and PDEs.
Terms: Spr | Units: 3
Instructors: Cantwell, B. (PI)

AA 222: Engineering Design Optimization (CS 361)

Design of engineering systems within a formal optimization framework. This course covers the mathematical and algorithmic fundamentals of optimization, including derivative and derivative-free approaches for both linear and non-linear problems, with an emphasis on multidisciplinary design optimization. Topics will also include quantitative methodologies for addressing various challenges, such as accommodating multiple objectives, automating differentiation, handling uncertainty in evaluations, selecting design points for experimentation, and principled methods for optimization when evaluations are expensive. Applications range from the design of aircraft to automated vehicles. Prerequisites: some familiarity with probability, programming, and multivariable calculus.
Terms: Spr | Units: 3-4
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints