2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 10 of 27 results for: AA ; Currently searching spring courses. You can expand your search to include all quarters

AA 103: Air and Space Propulsion

This course is designed to introduce the student to fundamental concepts of air-breathing and rocket propulsion including advanced concepts for space propulsion. Topics: the physical mechanisms of thrust creation and the parameters used to characterize propulsion system performance; comparison of airbreathing engine cycles; introduction to chemical rockets; multistage launch systems; plasmas and electric propulsion; solar sails and laser assisted propulsion. Prerequisites: AA 100, ENGR 30, and ME 70 (or equivalent).
Terms: Spr | Units: 3
Instructors: Cantwell, B. (PI)

AA 108N: Surviving Space

Space is dangerous. Anything we put into orbit has to survive the intense forces experienced during launch, extreme temperature changes, impacts by cosmic rays and energetic protons and electrons, as well as hits by human-made orbital debris and meteoroids. If we venture beyond Earth's sphere of influence, we must also then endure the extreme plasma environment without the protection of our magnetic field. With all of these potential hazards, it is remarkable that our space program has experienced so few catastrophic failures. In this seminar, students will learn how engineers design and test spacecraft to ensure survivability in this harsh space environment. We will explore three different space environment scenarios, including a small satellite that must survive in Low Earth Orbit (LEO), a large spacecraft headed to rendezvous with an asteroid, and a human spaceflight mission to Mars.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR
Instructors: Close, S. (PI)

AA 119N: 3D Printed Aerospace Structures

The demand for rapid prototyping of lightweight, complex, and low-cost structures has led the aerospace industry to leverage three-dimensional (3D) printing as a manufacturing technology. For example, the manufacture of aircraft engine components, unmanned aerial vehicle (UAV) wings, CubeSat parts, and satellite sub-systems have recently been realized with 3D printing and other additive manufacturing techniques. In this freshman seminar, a survey of state-of-the-art 3D printing processes will be reviewed and the process-dependent properties of 3D-printed materials and structures will be analyzed in detail. In addition, the advantages and disadvantages of this manufacturing approach will be debated during class! To give students exposure to 3D printing systems in action, tours of actual 3D printing facilities on campus (Stanford's Product Realization Laboratory), as well as in Silicon Valley (e.g., Made in Space) will be conducted.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR
Instructors: Senesky, D. (PI)

AA 136B: Spacecraft Design Laboratory (AA 236B)

Space Capstone II. Required for Aero/Astro majors. Continuation of 236A. Emphasis is on practical application of systems engineering to the life cycle program of spacecraft design, testing, launching, and operations. Prerequisite: 236A or consent of instructor.
Terms: Spr | Units: 3-5 | UG Reqs: WAY-AQR
Instructors: Murbach, M. (PI)

AA 146B: Aircraft Design Laboratory (AA 246X)

Air Capstone II. Required for Aero/Astro majors. This capstone design class brings together the material from prior classes in a way that emphasizes the interactions between disciplines and demonstrates how some of the more theoretical topics are synthesized in practical design of an aircraft concept. The class will address a single problem developed by the faculty and staff. Students will spend two quarters designing a system that addresses the objectives and requirements posed at the beginning of the course sequence. They will work individually and in teams, focusing on some aspect of the problem but exposed to many different disciplines and challenges. The second quarter will focus on the demonstration of a physical system incorporating features of the design solution. This may be accomplished with a set of experiments or a flight demonstration involving data gathering and synthesis of work in a final report authored by the team.
Terms: Spr | Units: 3
Instructors: Kroo, I. (PI)

AA 149: Operation of Aerospace Systems

This course provides a connection with the products of aerospace design through the use of tours, guest speakers, flight simulation, and hands-on exposure to systems used by pilots and space mission operators. We discuss real-world experiences with operators of spacecraft and launch vehicles, and we hear from pilots of manned and unmanned aircraft. Skills required to operate systems in the past, present, and future are addressed. Students will also develop an appreciation of the effects of human factors on aviation safety and the importance of space situational awareness. Anticipated tours include an air traffic control facility and a spacecraft operations center. Some class sessions will be off campus tours at local facilities; these will require some scheduling flexibility outside of normal class hours.
Terms: Spr | Units: 1
Instructors: Barrows, A. (PI)

AA 173: Flight Mechanics & Controls

Aircraft flight dynamics, stability, and their control system design; frame transformations, non-linear equations of motion for aircraft; linearization of longitudinal and lateral-directional dynamics; aircraft static longitudinal and lateral/directional stability and control; observability and controllability; PID feedback control; Prerequisites: E15, E105, AA100 and familiarity with MATLAB.
Terms: Spr | Units: 3
Instructors: Gao, G. (PI)

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

AA 203: Optimal and Learning-based Control

Optimal control solution techniques for systems with known and unknown dynamics. Dynamic programming, Hamilton-Jacobi reachability, and direct and indirect methods for trajectory optimization. Introduction to model predictive control. Model-based reinforcement learning, and connections between modern reinforcement learning in continuous spaces and fundamental optimal control ideas.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints