## CME 10A: Explorations in Calculus

In this course, we will explore the big ideas of calculus, through open, visual, and creative mathematics tasks. Students will be invited to think about what calculus is all about and why it matters. This course will benefit all students ¿ whether or not you have taken a calculus class. Students will work collaboratively in problem solving through a supportive community of mathematics learners. This course has three goals ¿ to give you a different mathematics experience that could reshape your relationship with mathematics, to provide you with a basis for success in future courses at Stanford, and to teach you the important ideas that pervade calculus. As a community, we will cultivate the positive ideas and mindsets that shape productive learning.

Last offered: Summer 2019

## CME 100: Vector Calculus for Engineers (ENGR 154)

Computation and visualization using MATLAB. Differential vector calculus: vector-valued functions, analytic geometry in space, functions of several variables, partial derivatives, gradient, linearization, unconstrained maxima and minima, Lagrange multipliers and applications to trajectory simulation, least squares, and numerical optimization. Introduction to linear algebra: matrix operations, systems of algebraic equations with applications to coordinate transformations and equilibrium problems. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Numerous examples and applications drawn from classical mechanics, fluid dynamics and electromagnetism. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100 »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Morvan, T. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)
;
Srivastav, A. (TA)
;
Zanette, A. (TA)

## CME 100A: Vector Calculus for Engineers, ACE

Students attend
CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: must be enrolled in the regular
CME100-01 or 02. Application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100A »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Morvan, T. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)
;
Srivastav, A. (TA)
;
Zanette, A. (TA)

## CME 102: Ordinary Differential Equations for Engineers (ENGR 155A)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications are presented. For analytical methods students learn to solve linear and non-linear first order ODEs; linear second order ODEs; and Laplace transforms. Numerical methods using MATLAB programming tool kit are also introduced to solve various types of ODEs including: first and second order ODEs, higher order ODEs, systems of ODEs, initial and boundary value problems, finite differences, and multi-step methods. This also includes accuracy and linear stability analyses of various numerical algorithms which are essential tools for the modern engineer. This class is foundational for professional careers in engineering and as a preparation for more advanced classes at the undergraduate and graduate levels. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Win, Spr, Sum
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Le, H. (PI)
;
Chen, G. (TA)
;
El Mosor, H. (TA)
;
Hunt, J. (TA)
;
Liu, X. (TA)
;
Nervo, G. (TA)

## CME 102A: Ordinary Differential Equations for Engineers, ACE

Students attend
CME102/ENGR155A lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME102) prior to submitting application at:n
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Win, Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Le, H. (PI)

## CME 104: Linear Algebra and Partial Differential Equations for Engineers (ENGR 155B)

Linear algebra: systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, LU factorization, eigensystem analysis, normal modes. Linear independence, vector spaces, subspaces and basis. Numerical analysis applied to structural equilibrium problems, electrical networks, and dynamic systems. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Applications in heat and mass transport, mechanical vibration and acoustic waves, transmission lines, and fluid mechanics. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications drawn from a variety of engineering fields. Prerequisite:
CME102/
ENGR155A.

Terms: Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

## CME 104A: Linear Algebra and Partial Differential Equations for Engineers, ACE

Students attend
CME104/ENGR155B lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME104) prior to submitting application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

## CME 106: Introduction to Probability and Statistics for Engineers (ENGR 155C)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Numerical simulation using Monte Carlo techniques. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses. Numerous applications in engineering, manufacturing, reliability and quality assurance, medicine, biology, and other fields. Prerequisite:
CME100/ENGR154 or
Math 51 or 52.

Terms: Win
| Units: 4
| UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

Instructors:
Khayms, V. (PI)
;
Chen, G. (TA)
;
Cote de Soux, P. (TA)
...
more instructors for CME 106 »

Instructors:
Khayms, V. (PI)
;
Chen, G. (TA)
;
Cote de Soux, P. (TA)
;
Deshpande, S. (TA)
;
Rowley, J. (TA)

## CME 107: Introduction to Machine Learning (EE 104)

Introduction to machine learning. Formulation of supervised and unsupervised learning problems. Regression and classification. Data standardization and feature engineering. Loss function selection and its effect on learning. Regularization and its role in controlling complexity. Validation and overfitting. Robustness to outliers. Simple numerical implementation. Experiments on data from a wide variety of engineering and other disciplines. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:
ENGR 108;
EE 178 or
CS 109; CS106A or equivalent.

Terms: Spr
| Units: 3-5

Instructors:
Lall, S. (PI)
;
Soroka, E. (TA)

## CME 108: Introduction to Scientific Computing (MATH 114)

Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floating-point arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments. Prerequisites:
MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of
CS 106A or higher).

Terms: Win
| Units: 3
| UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

Filter Results: