2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 
  Are you a Computer Science Student? Want to make Stanford's systems even better?
Do you want to help improve the Stanford systems that you and your friends use all the time? We are looking for students interested in hacking on ExploreCourses and other upcoming university systems. Click here to learn more!

41 - 50 of 147 results for: all courses

CS 107: Computer Organization and Systems

Introduction to the fundamental concepts of computer systems. Explores how computer systems execute programs and manipulate data, working from the C programming language down to the microprocessor. Topics covered include: the C programming language, data representation, machine-level code, computer arithmetic, elements of code compilation, memory organization and management, and performance evaluation and optimization. Prerequisites: 106B or X, or consent of instructor.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 108: Object-Oriented Systems Design

Software design and construction in the context of large OOP libraries. Taught in Java. Topics: OOP design, design patterns, testing, graphical user interface (GUI) OOP libraries, software engineering strategies, approaches to programming in teams. Prerequisite: 107.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

CS 110: Principles of Computer Systems

Principles and practice of engineering of computer software and hardware systems. Topics include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities. Prerequisite: 107.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci

CS 140: Operating Systems and Systems Programming

Operating systems design and implementation. Basic structure; synchronization and communication mechanisms; implementation of processes, process management, scheduling, and protection; memory organization and management, including virtual memory; I/O device management, secondary storage, and file systems. Prerequisite: CS 110.
Terms: Win, Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 143: Compilers

Principles and practices for design and implementation of compilers and interpreters. Topics: lexical analysis; parsing theory; symbol tables; type systems; scope; semantic analysis; intermediate representations; runtime environments; code generation; and basic program analysis and optimization. Students construct a compiler for a simple object-oriented language during course programming projects. Prerequisites: 103 or 103B, and 107.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 144: Introduction to Computer Networking

Principles and practice. Structure and components of computer networks, packet switching, layered architectures. Applications: web/http, voice-over-IP, p2p file sharing and socket programming. Reliable transport: TCP/IP, reliable transfer, flow control, and congestion control. The network layer: names and addresses, routing. Local area networks: ethernet and switches. Wireless networks and network security. Prerequisite: CS 110.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 145: Data Management and Data Systems

Introduction to the use, design, and implementation of database and data-intensive systems, including data models; schema design; data storage; query processing, query optimization, and cost estimation; concurrency control, transactions, and failure recovery; distributed and parallel execution; semi-structured databases; and data system support for advanced analytics and machine learning. Prerequisites: 103 and 107 (or equivalent).
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 148: Introduction to Computer Graphics and Imaging

Introductory prerequisite course in the computer graphics sequence introducing students to the technical concepts behind creating synthetic computer generated images. Begins with OpenGL/scanline rendering including discussions of underlying mathematical concepts including triangles, normals, interpolation, texture/bump mapping, etc. Importantly, the course will discuss handling light/color for image formats, computer displays, printers, etc., as well as how light interacts with the environment, constructing engineering models such as the BRDF, and various simplifications into more basic lighting and shading models. Ray tracing is introduced and compared to real world cameras to illustrate various concepts, and both anti-aliasing and acceleration structures are discussed. The final class mini-project consists of building out a ray tracer to create visually compelling images. Starter codes and code bits will be provided to aid in development, but this class focuses on what you can do with the code as opposed to what the code itself looks like. Therefore grading is weighted toward in person "demos" of the code in action - creativity and the production of impressive visual imagery are highly encouraged/rewarded. Prerequisites: CS 107, MATH 51.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE

CS 149: Parallel Computing

This course is an introduction to parallelism and parallel programming. Most new computer architectures are parallel; programming these machines requires knowledge of the basic issues of and techniques for writing parallel software. Topics: varieties of parallelism in current hardware (e.g., fast networks, multicore, accelerators such as GPUs, vector instruction sets), importance of locality, implicit vs. explicit parallelism, shared vs. non-shared memory, synchronization mechanisms (locking, atomicity, transactions, barriers), and parallel programming models (threads, data parallel/streaming, MapReduce, Apache Spark, SPMD, message passing, SIMT, transactions, and nested parallelism). Significant parallel programming assignments will be given as homework. The course is open to students who have completed the introductory CS course sequence through 110.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints