2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

111 - 120 of 147 results for: all courses

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Clemens, B. (PI)

MATSCI 160: Nanomaterials Laboratory

Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and self-assembled monolayers. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 161: Energy Materials Laboratory (MATSCI 171)

From early church architecture through modern housing, windows are passages of energy and matter in the forms of light, sound and air. By letting in heat during the summer and releasing it in winter, windows can place huge demands on air conditioning and heating systems, thereby increasing energy consumption and raising greenhouse gas levels in the atmosphere. Latest advances in materials science have enabled precise and on-demand control of electromagnetic radiation through `smart¿ dynamic windows with photochromic and electrochromic materials that change color and optical density in response to light radiance and electrical potential. In this course, we will spend the whole quarter on a project to make and characterize dynamic windows based on one of the electrochromic material systems, the reversible electroplating of metal alloys. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, optical spec more »
From early church architecture through modern housing, windows are passages of energy and matter in the forms of light, sound and air. By letting in heat during the summer and releasing it in winter, windows can place huge demands on air conditioning and heating systems, thereby increasing energy consumption and raising greenhouse gas levels in the atmosphere. Latest advances in materials science have enabled precise and on-demand control of electromagnetic radiation through `smart¿ dynamic windows with photochromic and electrochromic materials that change color and optical density in response to light radiance and electrical potential. In this course, we will spend the whole quarter on a project to make and characterize dynamic windows based on one of the electrochromic material systems, the reversible electroplating of metal alloys. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, optical spectroscopy, four-point probe measurements of conductivity and electrochemical measurements (cyclic voltammetry). The course will finish with students giving presentations on the prospects of using dynamic windows and generic radiation control in cars, homes, commercial buildings or airplanes. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 163: Mechanical Behavior Laboratory (MATSCI 173)

Technologically relevant experimental techniques for the study of the mechanical behavior of engineering materials in bulk and thin film form, including tension testing, nanoindentation, and wafer curvature stress analysis. Metallic and polymeric systems. In addition to regularly scheduled lecture (M/W), this course includes a three-hour lab session every other week (T/W/Th). Register for lecture section in addition to one lab section. Undergraduates register for 163 in 4 units; graduates register in 173 for 3 units
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 164: Electronic and Photonic Materials and Devices Laboratory (MATSCI 174)

Lab course. Current electronic and photonic materials and devices. Device physics and micro-fabrication techniques. Students design, fabricate, and perform physical characterization on the devices they have fabricated. Established techniques and materials such as photolithography, metal evaporation, and Si technology; and novel ones such as soft lithography and organic semiconductors. Prerequisite: MATSCI 152 or 199 or consent of instructor. Undergraduates register in 164 for 4 units; graduates register in 174 for 3 units. Students are required to sign up for lecture and one lab section.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 190: Organic and Biological Materials (MATSCI 210)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 192: Materials Chemistry (MATSCI 202)

An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry. Using both classroom lectures and journal discussions, students will gain an understanding of and be well-positioned to contribute to the frontiers of materials chemistry, ranging from solar-fuel generation to next-generation cancer treatments. Undergraduates register in 192 for 4 units; graduates register in 202 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 193: Atomic Arrangements in Solids (MATSCI 203)

Atomic arrangements in perfect and imperfect solids, especially important metals, ceramics, and semiconductors. Elements of formal crystallography, including development of point groups and space groups. Undergraduates register in 193 for 4 units; graduates register in 203 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 194: Thermodynamics and Phase Equilibria

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Salleo, A. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints