2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

111 - 120 of 163 results for: all courses

LINGUIST 183: Programming and Algorithms for Natural Language Processing

Construction of computer programs for linguistic processes such as string search, morphological, syntactic, and semantic analysis and generation, and simple machine translation. Emphasis is on the algorithms that have proved most useful for solving such problems.
Terms: not given this year, last offered Winter 2015 | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATH 114: Introduction to Scientific Computing (CME 108)

Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floating-point arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments. Prerequisites: MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of CS 106A or higher).
Terms: Win, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Marsden, A. (PI)

MATSCI 81N: Bioengineering Materials to Heal the Body

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 142: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators and metals and applications to semiconductor devices. Time-dependent perturbation theory and interaction of light with materials with applications to laser technology. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 157)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 143: Materials Structure and Characterization

Students will study the theory and application of characterization techniques used to examine the structure of materials at the nanoscale. Students will learn to classify the structure of materials such as semiconductors, ceramics, metals, and nanotubes according to the principles of crystallography. Methods used widely in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: E-50 or equivalent introductory materials science course. (Formerly 153)
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Brock, R. (PI)

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Chueh, W. (PI)

MATSCI 145: Kinetics of Materials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces. Prerequisites: MatSci 144. (Formerly 155)
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 151: Microstructure and Mechanical Properties (MATSCI 251)

Primarily for students without a materials background. Mechanical properties and their dependence on microstructure in a range of engineering materials. Elementary deformation and fracture concepts, strengthening and toughening strategies in metals and ceramics. Topics: dislocation theory, mechanisms of hardening and toughening, fracture, fatigue, and high-temperature creep. Undergraduates register in 151 for 4 units; graduates register for 251 in 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Dionne, J. (PI)

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win, Sum | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Clemens, B. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints