2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

31 - 40 of 282 results for: all courses

BIO 82: Genetics

The focus of the course is on the basic mechanisms underlying the transmission of genetic information and on the use of genetic analysis to study biological and medical questions. Major topics will include: (1) the use of existing genetic variation in humans and other species to identify genes that play an important role in determining traits and disease-susceptibility, (2) the analysis of mutations in model organisms and their use in the investigation of biological processes and questions and (3) using genetic information for diagnosis and the potential for genetic manipulations to treat disease. Prerequisites: None.
Terms: Aut | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIO 84: Physiology

The focus of Physiology is on understanding how organisms tackle the physical challenges of life on Earth. This course will provide an overview of animal and plant physiology and teach an understanding of how organisms maintain homeostasis, respond to environmental cues and coordinate behaviors across multiples tissues and organ systems. We will examine the structure and function of organs and organ systems and how those systems are controlled and regulated to maintain homeostasis. Control and regulation requires information as does the ability to respond to environmental stimuli, so we will give special consideration to hormonal and neural information systems. We will also be concerned with the interactions and integration of the activities of the different organ systems we study. Prerequisites: none.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIO 109A: Extending Life by Controlling Chronic Disease (BIOC 109A, BIOC 209A, HUMBIO 158)

The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 109B: The Human Genome and Disease: Genetic Diversity and Personalized Medicine (BIOC 109B)

Continuation of 109A/209A. Genetic drift: the path of human predecessors out of Africa to Europe and then either through Asia to Australia or through northern Russia to Alaska down to the W. Coast of the Americas. Support for this idea through the histocompatibility genes and genetic sequences that predispose people to diseases. Guest lectures from academia and pharmaceutical companies. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 110: Chromatin Regulation of the Genome (BIO 210)

Maintenance of the genome is a prerequisite for life. In eukaryotes, all DNA-templated processes are tightly connected to chromatin structure and function. This course will explore epigenetic and chromatin regulation of cellular processes related to aging, cancer, stem cell pluripotency, metabolic homeostasis, and development. Course material integrates current literature with a foundational review of histone modifications and nucleosome composition in epigenetic inheritance, transcription, replication, cell division and DNA damage responses. Prerequisite: BIO 41 or BIO 83 or consent of instructor.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Morrison, A. (PI)

BIO 112: Human Physiology (HUMBIO 133)

Human physiology will be examined by organ systems: cardiovascular, respiratory, renal, gastrointestinal and endocrine. Molecular and cell biology and signaling principles that underlie organ development, pathophysiology and opportunities for regenerative medicine are discussed, as well as integrative control mechanisms and fetal development. Prerequisite: Human Biology core or Biology Foundations or equivalent or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 115: The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi (BIO 239)

Fungi are critical, yet often hidden, components of the biosphere. They regulate decomposition, are primary partners in plant symbiosis and strongly impact agriculture and economics. Students will explore the fascinating world of fungal biology, ecology and evolution via lecture, lab, field exercises and Saturday field trips that will provide traditional and molecular experiences in the collection, analysis and industrial use of diverse fungi. Students will chose an environmental niche, collect and identify resident fungi, and hypothesize about their community relationship. Prerequisite: Bio 43 or BIO 81, 85 recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Peay, K. (PI)

BIO 117: Biology and Global Change (EARTHSYS 111, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 119: Evolution of Marine Ecosystems (EARTHSYS 122, GEOLSCI 123, GEOLSCI 223B)

Life originally evolved in the ocean. When, why, and how did the major transitions occur in the history of marine life? What triggered the rapid evolution and diversification of animals in the Cambrian, after more than 3.5 billion years of Earth's history? What caused Earth's major mass extinction events? How do ancient extinction events compare to current threats to marine ecosystems? How has the evolution of primary producers impacted animals, and how has animal evolution impacted primary producers? In this course, we will review the latest evidence regarding these major questions in the history of marine ecosystems. We will develop familiarity with the most common groups of marine animal fossils. We will also conduct original analyses of paleontological data, developing skills both in the framing and testing of scientific hypotheses and in data analysis and presentation.
Terms: not given this year, last offered Autumn 2017 | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 142: Molecular Geomicrobiology Laboratory (EARTHSYS 143, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Welander, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints