PHIL 154: Modal Logic (PHIL 254)
(Graduate students register for 254.) Syntax and semantics of modal logic and its basic theory: including expressive power, axiomatic completeness, correspondence, and complexity. Applications to topics in philosophy, computer science, mathematics, linguistics, and game theory. Prerequisite: 150 or preferably 151.
Terms: Spr, last offered Spring 2018

Units: 4

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
PHIL 166: Probability: Ten Great Ideas About Chance (PHIL 266, STATS 167, STATS 267)
Foundational approaches to thinking about chance in matters such as gambling, the law, and everyday affairs. Topics include: chance and decisions; the mathematics of chance; frequencies, symmetry, and chance; Bayes great idea; chance and psychology; misuses of chance; and harnessing chance. Emphasis is on the philosophical underpinnings and problems. Prerequisite: exposure to probability or a first course in statistics at the level of
STATS 60 or 116.
Terms: not given this year, last offered Spring 2016

Units: 4

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
PHYSICS 14N: Quantum Information: Visions and Emerging Technologies
What sets quantum information apart from its classical counterpart is that it can be encoded nonlocally, woven into correlations among multiple qubits in a phenomenon known as entanglement. We will discuss paradigms for harnessing entanglement to solve hitherto intractable computational problems or to push the precision of sensors to their fundamental quantum mechanical limits. We will also examine challenges that physicists and engineers are tackling in the laboratory today to enable the quantum technologies of the future.
Terms: not given this year, last offered Spring 2018

Units: 3

UG Reqs: WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
PHYSICS 61: Mechanics and Special Relativity
(First in a threepart advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, causality, and relativistic mechanics. Central forces, contact forces, linear restoring forces. Momentum transport, work, energy, collisions. Angular momentum, torque, moment of inertia in three dimensions. Damped and forced harmonic oscillators. Uses the language of vectors and multivariable calculus. Recommended prerequisites: Mastery of mechanics at the level of AP Physics C and AP Calculus BC or equivalent. Corequisite:
MATH 51 or
MATH 61CM or
MATH 61DM.
Terms: Aut

Units: 4

UG Reqs: GER: DBNatSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Burchat, P. (PI)
PHYSICS 63: Electricity, Magnetism, and Waves
(Second in a threepart advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course covers the foundations of electricity and magnetism for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Electricity, magnetism, and waves with some description of optics. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Relativistic point of view for moving charges. Displacement current, Maxwell's equations. Electromagnetic waves, dielectrics. Diffraction, interference, refraction, reflection, polarization. Prerequisite:
PHYSICS 61 and
MATH 51 or
MATH 61CM or
MATH 61DM. Pre or corequisite:
MATH 52 or
MATH 62CM or
MATH 62DM.
Terms: Win

Units: 4

UG Reqs: GER: DBNatSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Graham, P. (PI)
PHYSICS 65: Quantum and Thermal Physics
(Third in a threepart advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course introduces the foundations of quantum and statistical mechanics for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Quantum mechanics: atoms, electrons, nuclei. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particleinabox, simple harmonic oscillator, barrier penetration, tunneling, WKB and approximate solutions. Timedependent and multidimensional solution concepts. Coulomb potential and hydrogen atom structure. Thermodynamics and statistical mechanics: ideal gas, equipartition, heat capacity. Pro
more »
(Third in a threepart advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course introduces the foundations of quantum and statistical mechanics for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Quantum mechanics: atoms, electrons, nuclei. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particleinabox, simple harmonic oscillator, barrier penetration, tunneling, WKB and approximate solutions. Timedependent and multidimensional solution concepts. Coulomb potential and hydrogen atom structure. Thermodynamics and statistical mechanics: ideal gas, equipartition, heat capacity. Probability, counting states, entropy, equilibrium, chemical potential. Laws of thermodynamics. Cycles, heat engines, free energy. Partition function, Boltzmann statistics, Maxwell speed distribution, ideal gas in a box, Einstein model. Quantum statistical mechanics: classical vs. quantum distribution functions, fermions vs. bosons. Prerequisites:
PHYSICS 61 &
PHYSICS 63. Pre or corequisite:
MATH 53 or
MATH 63CM or
MATH 63DM.
Terms: Spr

Units: 4

UG Reqs: GER: DBNatSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Gratta, G. (PI)
PHYSICS 110: Advanced Mechanics (PHYSICS 210)
Lagrangian and Hamiltonian mechanics. Principle of least action, EulerLagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, HamiltonJacobi theory, actionangle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for
Physics 110 (4 units). Graduates register for
Physics 210 (3 units). Prerequisites:
MATH 131P or
PHYSICS 111, and
PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite:
PHYSICS 130.
Terms: Aut

Units: 34

UG Reqs: GER: DBNatSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
PHYSICS 112: Mathematical Methods for Physics
This course will cover methods of mathematical physics that are pertinent to physics. Topics include: Complex analysis, group theory, calculus of variations. Emphasis will be on indepth coverage of selected topics. Prerequisites: MATH 50 or 60 series
Terms: Win

Units: 4

UG Reqs: GER: DBNatSci, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Raghu, S. (PI)
PHYSICS 113: Computational Physics
Numerical methods for solving problems in mechanics, astrophysics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace's equation and Poisson's equation with various methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. Short introduction to Python, which is used for class examples and active learning notebooks; independent class projects make up more than half of the grade and may be programmed in any language such as C, Python or Matlab. No Prerequisites but some previous programming experience is advisable.
Terms: Spr

Units: 4

UG Reqs: GER: DBNatSci, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Cabrera, B. (PI)
PHYSICS 120: Intermediate Electricity and Magnetism I
Vector analysis. Electrostatic fields, including boundaryvalue problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites:
PHYSICS 43 or PHYS 63;
MATH 52 and
MATH 53. Pre or corequisite: PHYS 111,
MATH 131P or
MATH 173. Recommended corequisite: PHYS 112.
Terms: Win

Units: 4

UG Reqs: GER: DBNatSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Hogan, J. (PI)
Filter Results: