## BIO 141: Biostatistics (STATS 141)

Introductory statistical methods for biological data: describing data (numerical and graphical summaries); introduction to probability; and statistical inference (hypothesis tests and confidence intervals). Intermediate statistical methods: comparing groups (analysis of variance); analyzing associations (linear and logistic regression); and methods for categorical data (contingency tables and odds ratio). Course content integrated with statistical computing in R.

Terms: Win
| Units: 5
| UG Reqs: GER:DB-Math, WAY-AQR

Instructors:
Dubey, P. (PI)

## BIOHOPK 174H: Experimental Design and Probability (BIOHOPK 274H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on experimental design and the use of linear models in testing hypotheses (e.g., analysis of variance, regression). Students will use R to explore and analyze locally relevant biological datasets. No programming or statistical background is assumed. Prerequisite: consent of instructor.

Last offered: Spring 2020
| UG Reqs: GER: DB-NatSci, GER:DB-Math, WAY-AQR, WAY-FR

## CME 100: Vector Calculus for Engineers (ENGR 154)

Computation and visualization using MATLAB. Differential vector calculus: vector-valued functions, analytic geometry in space, functions of several variables, partial derivatives, gradient, linearization, unconstrained maxima and minima, Lagrange multipliers and applications to trajectory simulation, least squares, and numerical optimization. Introduction to linear algebra: matrix operations, systems of algebraic equations with applications to coordinate transformations and equilibrium problems. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Numerous examples and applications drawn from classical mechanics, fluid dynamics and electromagnetism. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100 »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)

## CME 100A: Vector Calculus for Engineers, ACE

Students attend
CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: must be enrolled in the regular
CME100-01 or 02. Application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
...
more instructors for CME 100A »

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Burugupalli, P. (TA)
;
Giovanardi, D. (TA)
;
Nervo, G. (TA)
;
Rowley, J. (TA)

## CME 102: Ordinary Differential Equations for Engineers (ENGR 155A)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications are presented. For analytical methods students learn to solve linear and non-linear first order ODEs; linear second order ODEs; and Laplace transforms. Numerical methods using MATLAB programming tool kit are also introduced to solve various types of ODEs including: first and second order ODEs, higher order ODEs, systems of ODEs, initial and boundary value problems, finite differences, and multi-step methods. This also includes accuracy and linear stability analyses of various numerical algorithms which are essential tools for the modern engineer. This class is foundational for professional careers in engineering and as a preparation for more advanced classes at the undergraduate and graduate levels. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math 21). Placement diagnostic (recommendation non-binding) at:
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.

Terms: Aut, Win, Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Le, H. (PI)

## CME 102A: Ordinary Differential Equations for Engineers, ACE

Students attend
CME102/ENGR155A lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME102) prior to submitting application at:n
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Aut, Win, Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Le, H. (PI)

## CME 104: Linear Algebra and Partial Differential Equations for Engineers (ENGR 155B)

Linear algebra: systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, LU factorization, eigensystem analysis, normal modes. Linear independence, vector spaces, subspaces and basis. Numerical analysis applied to structural equilibrium problems, electrical networks, and dynamic systems. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Applications in heat and mass transport, mechanical vibration and acoustic waves, transmission lines, and fluid mechanics. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications drawn from a variety of engineering fields. Prerequisite:
CME102/
ENGR155A.

Terms: Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)

## CME 104A: Linear Algebra and Partial Differential Equations for Engineers, ACE

Students attend
CME104/ENGR155B lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section (
CME104) prior to submitting application at:
https://engineering.stanford.edu/students/programs/engineering-diversity-programs/additional-calculus-engineers

Terms: Spr
| Units: 6
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)

## CME 106: Introduction to Probability and Statistics for Engineers (ENGR 155C)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Numerical simulation using Monte Carlo techniques. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses. Numerous applications in engineering, manufacturing, reliability and quality assurance, medicine, biology, and other fields. Prerequisite:
CME100/ENGR154 or
Math 51 or 52.

Terms: Win
| Units: 4
| UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

Instructors:
Khayms, V. (PI)

## CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin
more »

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take
CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in
CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with
CS103.

Terms: Aut, Win, Spr, Sum
| Units: 3-5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Lee, C. (PI)
;
Schwarz, K. (PI)
;
Smith, R. (PI)
;
Dudas, S. (TA)
;
Sha, H. (TA)
;
Wang, W. (TA)

Filter Results: