BIOE 273: Biodesign for Digital Health (MED 273)
Health care is facing significant cross-industry challenges and opportunities created by a number of factors, including the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables. Simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from welln
more »
Health care is facing significant cross-industry challenges and opportunities created by a number of factors, including the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables. Simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one approach innovation in digital health to address these health care challenges while ensuring the greatest chance of success? At Stanford Biodesign, we believe that innovation is a process that can be learned, practiced, and perfected; and, it starts with an unmet need. In Biodesign for Digital Health, students will learn about digital health and the Biodesign needs-driven innovation process from over 50 industry experts. Over the course of 10weeks, these speakers will join the teaching team in a dynamic classroom environment that includes lectures, panel discussions, and breakout sessions. These experts represent startups, corporations, venture capital firms, accelerators, research labs, healthcare providers, and more. Student teams will take actual digital and mobile health challenges and learn how to apply Biodesign innovation principles to research and evaluate needs, ideate solutions, and objectively assess them against key criteria for satisfying the needs. Teams take a hands-on approach with the support of need coaches and other mentors. On the final day of class, teams present to a panel of digital health experts and compete for project extension funding. Friday section will be used for team projects and for scheduled workshops. Limited enrollment for this course. Students should submit their application online via:
https://stanforduniversity.qualtrics.com/jfe/form/SV_3O90E6zVaW3rRtQ
Terms: Aut, Sum
| Units: 3
Instructors:
Aalami, O. (PI)
;
Xu, S. (SI)
BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)
In this two-quarter course series (
BIOE 374A/B,
MED 272A/B,
ME 368A/B,
OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and int
more »
In this two-quarter course series (
BIOE 374A/B,
MED 272A/B,
ME 368A/B,
OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are required to participate in both quarters of the course. Visit
http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at
http://biodesign.stanford.edu/.
Terms: Win
| Units: 4
BIOE 374B: Biodesign Innovation: Concept Development and Implementation (ME 368B, MED 272B)
In this two-quarter course series (
BIOE 374A/B,
MED 272A/B,
ME 368A/B,
OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and int
more »
In this two-quarter course series (
BIOE 374A/B,
MED 272A/B,
ME 368A/B,
OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are required to participate in both quarters of the course. Visit
http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at
http://biodesign.stanford.edu/.
Terms: Spr
| Units: 4
Instructors:
Makower, J. (PI)
;
Denend, L. (SI)
;
Edmonds, Z. (SI)
...
more instructors for BIOE 374B »
Instructors:
Makower, J. (PI)
;
Denend, L. (SI)
;
Edmonds, Z. (SI)
;
Venook, R. (SI)
;
Pradhan, P. (TA)
;
Rochford, K. (TA)
BIOE 376: Startup Garage: Design
Startup Garage is an intensive, hands-on, project-based course where students apply human-centric design, lean startup methodology, and the Business Model Canvas to conceive, design, and field-test new business concepts that address real world needs. Teams get out of the building and interact directly with users, industry participants, and advisors to deeply understand one or more unmet customer needs. They proceed to design, prototype, and test their proposed products or services and a business model. Teams working on impact-focused ventures will apply the same methodology to address the needs of their beneficiaries. Students develop entrepreneurial skills as they learn critical, cutting-edge techniques about launching a venture. The course is offered by the Graduate School of Business. PREREQUISITE: Team application required. See details and apply at
http://startupgarage.stanford.edu/details (login required).
Terms: Aut
| Units: 4
BIOE 377: Startup Garage: Testing and Launch
In this intensive, hands-on project based course, teams continue to develop their ventures based on a user need that they validated in preparation for the course. They build out more elaborate versions of their prototypes and Business Model Canvas; test hypotheses about the product/service, business model, value proposition, customer acquisition, revenue generation, and fundraising; and deliver a seed round financing pitch to a panel of investors. Students develop entrepreneurial skills as they 1) Get out of the building and gather insights from users, investors, and advisors, 2) Make decisions about pivoting, 3) Work through their operating plans and unit economics, 4) Test go-to-market strategies, 5) Consider equity splits, 6) Learn term sheet negotiations, and 7) Practice their pitches. PREREQUISITE:
BIOE 376 or a team application. See details and apply at
http://startupgarage.stanford.edu/details (login required).
Terms: Win
| Units: 4
BIOS 289: Preparation & Practice: Finance of Biotechnology
Tailored lectures and case studies lead to a practical final project. Leaders from local firms and companies will help you gain insight into the biotechnology industry, the skills and experiences necessary to succeed, and the various roles and responsibilities within the industry. Coursework is divided into 4 sections: Introductory Material: The first segment consists of two lectures and introduces the biotechnology company life cycle along with introductory concepts in finance. Venture Capital and Private Equity: The second segment consists of three lectures devoted to venture capital finance and private equity where students will learn the basic mechanics of raising capital. nPublic Finance: The third segment consists of the interpretation of financial statements, construction of company forecasts, and evaluating business value from such projections. Final Project: The final lecture will conclude with student presentations on their final projects.
Terms: Win
| Units: 1
Instructors:
Eberle, S. (PI)
BIOS 291: Preparation & Practice: Management Consulting
This course is designed for students who are interested in learning about consulting including tools and techniques to gain a consulting mindset. The course requires students to complete short assignments, participate in classroom discussions, and a team project. Students will have the opportunity to understand the consulting process right from sourcing and starting engagements to closure and follow up engagements. Further, with the help of some practical execution in the classroom, students will also learn how to manage client needs and situations, articulating client needs in a succinct proposal, planning and executing consulting assignments, managing client interactions and in the process, learn to leverage some common frameworks for consulting.
Terms: Spr
| Units: 1
Instructors:
Eberle, S. (PI)
;
Sundararajan, S. (SI)
BIOS 292: Preparation & Practice: Science Communication & Media
Through tailored lecture, case study, and a practical final project, academic and professional leaders will help you gain insight into the science communications and media industry. This course assists students in developing the communication skills necessary for post-training and internship success in a science communications/media field and it provides an understanding of the scope of career opportunities within the science communications sector, focusing on the development, organization, and management issues specific to it. Through connections with alumni, faculty, and other practitioners from a variety of fields and organizations, as well as hands-on experience with the techniques and methodologies most useful on the job market, students will define their own professional goals, increase their awareness of industry terminology and theories, and hone expertise in the areas of: publishing, editing, workflow, ethics, trends, principles of effective scholarly/news writing, interviewing techniques, and media/website management.
Terms: Sum
| Units: 1
Instructors:
Eberle, S. (PI)
;
Adams, A. (SI)
;
De Souza, C. (SI)
...
more instructors for BIOS 292 »
Instructors:
Eberle, S. (PI)
;
Adams, A. (SI)
;
De Souza, C. (SI)
;
Genest, P. (SI)
;
Sainani, K. (SI)
CEE 227: Global Project Finance
Public and private sources of finance for large, complex, capital-intensive projects in developed and developing countries. Benefits and disadvantages, major participants, risk sharing, and challenges of project finance in emerging markets. Financial, economic, political, cultural, and technological elements that affect project structures, processes, and outcomes. Case studies. Limited enrollment.
Terms: Win
| Units: 3-5
Instructors:
Bennon, M. (PI)
CHEM 296: Creating and Leading New Ventures in Engineering and Science-based Industries (CHEM 196, CHEMENG 196, CHEMENG 296)
Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Spr
| Units: 3
Filter Results: