2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 3 of 3 results for: STATS110

CEE 154: Data Analytics for Physical Systems (CEE 254)

This course introduces practical applications of data analytics and machine learning from understanding sensor data to extracting information and decision making in the context of sensed physical systems. Many civil engineering applications involve complex physical systems, such as buildings, transportation, and infrastructure systems, which are integral to urban systems and human activities. Emerging data science techniques and rapidly growing data about these systems have enabled us to better understand them and make informed decisions. In this course, students will work with real-world data to learn about challenges in analyzing data, applications of statistical analysis and machine learning techniques using MATLAB, and limitations of the outcomes in domain-specific contexts. Topics include data visualization, noise cleansing, frequency domain analysis, forward and inverse modeling, feature extraction, machine learning, and error analysis. Prerequisites: CS106A, CME 100/ Math51, Stats110/101, or equivalent.
Terms: Aut | Units: 3-4
Instructors: Noh, H. (PI)

CEE 254: Data Analytics for Physical Systems (CEE 154)

This course introduces practical applications of data analytics and machine learning from understanding sensor data to extracting information and decision making in the context of sensed physical systems. Many civil engineering applications involve complex physical systems, such as buildings, transportation, and infrastructure systems, which are integral to urban systems and human activities. Emerging data science techniques and rapidly growing data about these systems have enabled us to better understand them and make informed decisions. In this course, students will work with real-world data to learn about challenges in analyzing data, applications of statistical analysis and machine learning techniques using MATLAB, and limitations of the outcomes in domain-specific contexts. Topics include data visualization, noise cleansing, frequency domain analysis, forward and inverse modeling, feature extraction, machine learning, and error analysis. Prerequisites: CS106A, CME 100/ Math51, Stats110/101, or equivalent.
Terms: Aut | Units: 3-4
Instructors: Noh, H. (PI)

STATS 110: Statistical Methods in Engineering and the Physical Sciences

Introduction to statistics for engineers and physical scientists. Topics: descriptive statistics, probability, interval estimation, tests of hypotheses, nonparametric methods, linear regression, analysis of variance, elementary experimental design. Prerequisite: one year of calculus.
Terms: Aut | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints