2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
by subject...

91 - 100 of 119 results for: STATS

STATS 316: Stochastic Processes on Graphs

Local weak convergence, Gibbs measures on trees, cavity method, and replica symmetry breaking. Examples include random k-satisfiability, the assignment problem, spin glasses, and neural networks. Prerequisite: 310A or equivalent.
Terms: Aut | Units: 1-3 | Grading: Letter or Credit/No Credit

STATS 318: Modern Markov Chains

Tools for understanding Markov chains as they arise in applications. Random walk on graphs, reversible Markov chains, Metropolis algorithm, Gibbs sampler, hybrid Monte Carlo, auxiliary variables, hit and run, Swedson-Wong algorithms, geometric theory, Poincare-Nash-Cheger-Log-Sobolov inequalities. Comparison techniques, coupling, stationary times, Harris recurrence, central limit theorems, and large deviations.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

STATS 319: Literature of Statistics

Literature study of topics in statistics and probability culminating in oral and written reports. May be repeated for credit.
Terms: Aut, Spr | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

STATS 320: Heterogeneous Data with Kernels

Mathematical and computational methods necessary to understanding analysis of heterogeneous data using generalized inner products and Kernels. For areas that need to integrate data from various sources, biology, environmental and chemical engineering, molecular biology, bioinformatics. Topics: Distances, inner products and duality. Multivariate projections. Complex heterogeneous data structures (networks, trees, categorical as well as multivariate continuous data). Canonical correlation analysis, canonical correspondence analysis. Kernel methods in Statistics. Representer theorem. Kernels on graphs. Kernel versions of standard statistical procedures. Data cubes and tensor methods.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

STATS 321: Modern Applied Statistics: Transposable Data

Topics: clustering, biclustering, and spectral clustering. Data analysis using the singular value decomposition, nonnegative decomposition, and generalizations. Plaid model, aspect model, and additive clustering. Correspondence analysis, Rasch model, and independent component analysis. Page rank, hubs, and authorities. Probabilistic latent semantic indexing. Recommender systems. Applications to genomics and information retrieval. Prerequisites: 315A,B, 305/306A,B, or consent of instructor.
Terms: not given this year | Units: 2-3 | Grading: Letter or Credit/No Credit

STATS 322: Function Estimation in White Noise

Gaussian white noise model sequence space form. Hyperrectangles, quadratic convexity, and Pinsker's theorem. Minimax estimation on Lp balls and Besov spaces. Role of wavelets and unconditional bases. Linear and threshold estimators. Oracle inequalities. Optimal recovery and universal thresholding. Stein's unbiased risk estimator and threshold choice. Complexity penalized model selection. Connecting fast wavelet algorithms and theory. Beyond orthogonal bases.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

STATS 325: Multivariate Analysis and Random Matrices in Statistics

Topics on Multivariate Analysis and Random Matrices in Statistics (full description TBA)
Terms: not given this year | Units: 2-3 | Grading: Letter or Credit/No Credit

STATS 329: Large-Scale Simultaneous Inference

Estimation, testing, and prediction for microarray-like data. Modern scientific technologies, typified by microarrays and imaging devices, produce inference problems with thousands of parallel cases to consider simultaneously. Topics: empirical Bayes techniques, James-Stein estimation, large-scale simultaneous testing, false discovery rates, local fdr, proper choice of null hypothesis (theoretical, permutation, empirical nulls), power, effects of correlation on tests and estimation accuracy, prediction methods, related sets of cases ("enrichment"), effect size estimation. Theory and methods illustrated on a variety of large-scale data sets.
Terms: not given this year | Units: 1-3 | Grading: Letter or Credit/No Credit

STATS 330: An Introduction to Compressed Sensing (CME 362)

Compressed sensing is a new data acquisition theory asserting that one can design nonadaptive sampling techniques that condense the information in a compressible signal into a small amount of data. This revelation may change the way engineers think about signal acquisition. Course covers fundamental theoretical ideas, numerical methods in large-scale convex optimization, hardware implementations, connections with statistical estimation in high dimensions, and extensions such as recovery of data matrices from few entries (famous Netflix Prize).
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Donoho, D. (PI)

STATS 333: Modern Spectral Analysis

Traditional spectral analysis encompassed Fourier methods and their elaborations, under the assumption of a simple superposition of sinusoids, independent of time. This enables development of efficient and effective computational schemes, such as the FFT. Since many systems change in time, it becomes of interest to generalize classical spectral analysis to the time-varying setting. In addition, classical methods suffer from resolution limits which we hope to surpass. In this topics course, we follow two threads. On the one hand, we consider the ¿estimation of instantaneous frequencies and decomposition of source signals, which may be time-varying¿. The thread begins with the empirical mode decomposition (EMD) for non-stationary signal decomposition into intrinsic mode functions (IMF¿s), introduced by N. Huang et al [1], together with its machinery of the sifting process and computation of the Hilbert spectrum, resulting in the so-called adaptive harmonic model (AHM).nNext, this thread considers the wavelet synchrosqueezing transform (WSST) proposed by Daubechies et al [2], which attempts to estimate instantaneous frequencies (IF¿s), via the frequency re-assignment (FRA) rule, that facilitaes non-stationary signal decomposition. In reference [3], a real-time method is proposed for computing the FRA rule; and in reference [4], the exact number of AHM components is determined with more precise estimation of the IF¿s, for more accurate extraction of the signal components and polynomial-like trend. nIn another thread, recent developments in optimization have been applied to obtain time-varying spectra or very high-resolution spectra; in particular, references [5]-[8] give examples of recent results where convex estimation is applied to obtain new and more highly resolved spectral estimates, some with time-varying structure.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints