2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

31 - 38 of 38 results for: STATS ; Currently searching autumn courses. You can expand your search to include all quarters

STATS 322: Function Estimation in White Noise

Gaussian white noise model sequence space form. Hyperrectangles, quadratic convexity, and Pinsker's theorem. Minimax estimation on Lp balls and Besov spaces. Role of wavelets and unconditional bases. Linear and threshold estimators. Oracle inequalities. Optimal recovery and universal thresholding. Stein's unbiased risk estimator and threshold choice. Complexity penalized model selection. Connecting fast wavelet algorithms and theory. Beyond orthogonal bases.
Terms: Aut | Units: 3

STATS 366: Modern Statistics for Modern Biology (BIOS 221)

Application based course in nonparametric statistics. Modern toolbox of visualization and statistical methods for the analysis of data, examples drawn from immunology, microbiology, cancer research and ecology. Methods covered include multivariate methods (PCA and extensions), sparse representations (trees, networks, contingency tables) as well as nonparametric testing (Bootstrap, permutation and Monte Carlo methods). Hands on, use R and cover many Bioconductor packages. Prerequisite: Minimal familiarity with computers.
Terms: Aut, Sum | Units: 3
Instructors: Holmes, S. (PI)

STATS 385: Analyses of Deep Learning

Deep learning is a transformative technology that has delivered impressive improvements in image classification and speech recognition. Many researchers are trying to better understand how to improve prediction performance and also how to improve training methods. Some researchers use experimental techniques; others use theoretical approaches. In this course we will review both experimental and theoretical analyses of deep learning. We will have 8-10 guest lecturers as well as graded projects for those who take the course for credit.
Terms: Aut | Units: 1
Instructors: Donoho, D. (PI)

STATS 390: Consulting Workshop

Skills required of practicing statistical consultants, including exposure to statistical applications. Students participate as consultants in the department's drop-in consulting service, analyze client data, and prepare formal written reports. Seminar provides supervised experience in short term consulting. May be repeated for credit. Prerequisites: course work in applied statistics or data analysis, and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

STATS 398: Industrial Research for Statisticians

Doctoral research as in 399, but must be conducted for an off-campus employer. A final report acceptable to the advisor outlining work activity, problems investigated, key results, and any follow-up projects they expect to perform is required. The report is due at the end of the quarter in which the course is taken. May be repeated for credit. Prerequisite: Statistics Ph.D. candidate.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

STATS 399: Research

Research work as distinguished from independent study of nonresearch character listed in 199. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

STATS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

STATS 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints