## PHYSICS 21: Mechanics, Fluids, and Heat

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe diverse phenomena. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and interactive group problem solving. Prerequisite: high school algebra and trigonometry; calculus not required. Autumn 2021-22: Class will be taught online synchronously in active learning format with much of the learning in smaller breakout rooms. This class will not be recorded. Please enroll in a section that you can attend regularly.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Nanavati, C. (PI)
;
Corbin, J. (TA)
;
Gruenke, R. (TA)
...
more instructors for PHYSICS 21 »

Instructors:
Nanavati, C. (PI)
;
Corbin, J. (TA)
;
Gruenke, R. (TA)
;
Hoke, J. (TA)
;
Irving, B. (TA)
;
Loning, M. (TA)
;
Riddiford, L. (TA)
;
Villanueva, B. (TA)

## PHYSICS 21S: Mechanics and Heat

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: high school algebra and trigonometry; calculus not required.

| UG Reqs: GER: DB-NatSci, WAY-SMA

Filter Results: