## PHYSICS 94SI: Diverse Perspectives in Physics

Have you ever wondered how your professors got to be where they are today? Or what it is like to be a female professor, a faculty member raised first-generation/low income, or even a Nobel laureate? Professors of a diverse set of identities and backgrounds will share the story of their lives and career trajectories over lunch, with an emphasis on their personal lives and experiences as undergraduates and graduate students. A Q&A session will follow. Free lunch provided.

Terms: Spr
| Units: 1

## PHYSICS 100: Introduction to Observational Astrophysics

Designed for undergraduate physics majors but open to all students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging and spectroscopic techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Enrollment by permission. To get a permission number please complete form:
http://web.stanford.edu/~elva/physics100prelim.fb If you have not heard from us by the beginning of class, please come to the first class session.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

## PHYSICS 108: Advanced Physics Laboratory: Project

Have you ever gotten to come up with a scientific question you'd like to explore, then worked with a small group to plan, design, build, and carry out an experiment to pursue this? Most projects pursued (drawn from condensed matter or particle physics) have never before been done in the class. This is an accelerated, guided "simulation" of real frontier experimental research. We provide substantial resources to help your team. Prerequisites
PHYSICS 105,
PHYSICS 107.
PHYSICS 130 preferred.

Terms: Spr
| Units: 5
| UG Reqs: WAY-AQR, WAY-SMA

Instructors:
Goldhaber-Gordon, D. (PI)
;
Holland, C. (TA)

## PHYSICS 113: Computational Physics

Numerical methods for solving problems in mechanics, astrophysics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace's equation and Poisson's equation with various methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. Short introduction to Python, which is used for class examples and active learning notebooks; independent class projects make up more than half of the grade and may be programmed in any language such as C, Python or Matlab. No Prerequisites but some previous programming experience is advisable.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-FR

Instructors:
Cabrera, B. (PI)
;
Hazelton, R. (SI)
;
Bentsen, G. (TA)
...
more instructors for PHYSICS 113 »

Instructors:
Cabrera, B. (PI)
;
Hazelton, R. (SI)
;
Bentsen, G. (TA)
;
Markovic, O. (TA)
;
Periwal, A. (TA)
;
Yu, T. (TA)

## PHYSICS 121: Intermediate Electricity and Magnetism II

Conservation laws and electromagnetic waves, Poynting's theorem, tensor formulation, potentials and fields. Plane wave problems (free space, conductors and dielectric materials, boundaries). Dipole and quadruple radiation. Special relativity and transformation between electric and magnetic fields. Prerequisites: PHYS 120 and PHYS 111 or
MATH 131P or
MATH 173; Recommended: PHYS 112.

Terms: Spr
| Units: 4

## PHYSICS 131: Quantum Mechanics II

Identical particles; Fermi and Bose statistics. Time-independent perturbation theory. Fine structure, the Zeeman effect and hyperfine splitting in the hydrogen atom. Time-dependent perturbation theory. Variational principle and WKB approximation. Prerequisite:
PHYSICS 120,
PHYSICS 130,
PHYSICS 111 or
MATH 131P, or
MATH 173. Pre- or corequisite:
PHYSICS 121.

Terms: Spr
| Units: 4

## PHYSICS 152: Introduction to Particle Physics I (PHYSICS 252)

Elementary particles and the fundamental forces. Quarks and leptons. The mediators of the electromagnetic, weak and strong interactions. Interaction of particles with matter; particle acceleration, and detection techniques. Symmetries and conservation laws. Bound states. Decay rates. Cross sections. Feynman diagrams. Introduction to Feynman integrals. The Dirac equation. Feynman rules for quantum electrodynamics and for chromodynamics. Undergraduates register for
PHYSICS 152. Graduate students register for
PHYSICS 252. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite:
PHYSICS 130. Pre- or corequisite:
PHYSICS 131.

Terms: Spr
| Units: 3

Instructors:
Tompkins, L. (PI)
;
Cheong, S. (TA)

## PHYSICS 161: Introduction to Cosmology and Extragalactic Astrophysics (PHYSICS 261)

What do we know about the physical origins, content, and evolution of the Universe -- and how do we know it? Students learn how cosmological distances and times, and the geometry and expansion of space, are described and measured. Composition of the Universe. Origin of matter and the elements. Observational evidence for dark matter and dark energy. Thermal history of the Universe, from inflation to the present. Emergence of large-scale structure from quantum perturbations in the early Universe. Astrophysical tools used to learn about the Universe. Big open questions in cosmology. Undergraduates register for
Physics 161. Graduates register for
Physics 261. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite:
PHYSICS 121 or equivalent.

Terms: Spr
| Units: 3

Instructors:
Michelson, P. (PI)

## PHYSICS 172: Solid State Physics (APPPHYS 272)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for
PHYSICS 172 and graduate students for
APPPHYS 272. Prerequisites:
PHYSICS 170 and
PHYSICS 171, or equivalents.

Terms: Spr
| Units: 3

Instructors:
Hwang, H. (PI)
;
Kapitulnik, A. (PI)

## PHYSICS 190: Independent Research and Study

Undergraduate research in experimental or theoretical physics under the supervision of a faculty member. Prerequisites: superior work as an undergraduate Physics major and consent of instructor.

Terms: Aut, Win, Spr, Sum
| Units: 1-9
| Repeatable
for credit

Instructors:
Abel, T. (PI)
;
Akerib, D. (PI)
;
Allen, S. (PI)
...
more instructors for PHYSICS 190 »

Instructors:
Abel, T. (PI)
;
Akerib, D. (PI)
;
Allen, S. (PI)
;
Alonso, J. (PI)
;
Baer, T. (PI)
;
Blandford, R. (PI)
;
Block, S. (PI)
;
Bucksbaum, P. (PI)
;
Burchat, P. (PI)
;
Burke, D. (PI)
;
Byer, R. (PI)
;
Cabrera, B. (PI)
;
Chang, H. (PI)
;
Diehn, M. (PI)
;
Dimopoulos, S. (PI)
;
Doniach, S. (PI)
;
Drell, P. (PI)
;
Feldman, B. (PI)
;
Fisher, G. (PI)
;
Fisher, I. (PI)
;
Glenzer, S. (PI)
;
Goldhaber-Gordon, D. (PI)
;
Graham, P. (PI)
;
Gratta, G. (PI)
;
Hartnoll, S. (PI)
;
Hayden, P. (PI)
;
Hogan, J. (PI)
;
Hollberg, L. (PI)
;
Irwin, K. (PI)
;
Kachru, S. (PI)
;
Kahn, S. (PI)
;
Kapitulnik, A. (PI)
;
Kasevich, M. (PI)
;
Kuo, C. (PI)
;
Lev, B. (PI)
;
Lipa, J. (PI)
;
Macintosh, B. (PI)
;
Manoharan, H. (PI)
;
Maxim, P. (PI)
;
McGehee, M. (PI)
;
Moler, K. (PI)
;
Palanker, D. (PI)
;
Pande, V. (PI)
;
Perl, M. (PI)
;
Petrosian, V. (PI)
;
Raghu, S. (PI)
;
Raubenheimer, T. (PI)
;
Romani, R. (PI)
;
Roodman, A. (PI)
;
Safavi-Naeini, A. (PI)
;
Scherrer, P. (PI)
;
Schindler, R. (PI)
;
Schleier-Smith, M. (PI)
;
Schwartzman, A. (PI)
;
Senatore, L. (PI)
;
Su, D. (PI)
;
Susskind, L. (PI)
;
Suzuki, Y. (PI)
;
Tanaka, H. (PI)
;
Tantawi, S. (PI)
;
Tompkins, L. (PI)
;
Vasy, A. (PI)
;
Wacker, J. (PI)
;
Wagoner, R. (PI)
;
Wechsler, R. (PI)
;
Wieman, C. (PI)