2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

81 - 90 of 617 results for: Medicine

BIOMEDIN 371: Computational Biology in Four Dimensions (BIOPHYS 371, CME 371, CS 371)

Cutting-edge research on computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules, cells, and everything in between. These techniques, which draw on approaches ranging from physics-based simulation to machine learning, play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course is devoted primarily to reading, presentation, discussion, and critique of papers describing important recent research developments. Prerequisite: CS 106A or equivalent, and an introductory course in biology or biochemistry. Recommended: some experience in mathematical modeling (does not need to be a formal course).
Terms: Win | Units: 3
Instructors: Dror, R. (PI)

BIOPHYS 279: Computational Biology: Structure and Organization of Biomolecules and Cells (BIOE 279, BIOMEDIN 279, CME 279, CS 279)

Computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules and cells. These computational methods play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course topics include protein structure prediction, protein design, drug screening, molecular simulation, cellular-level simulation, image analysis for microscopy, and methods for solving structures from crystallography and electron microscopy data. Prerequisites: elementary programming background ( CS 106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Aut | Units: 3

BIOPHYS 371: Computational Biology in Four Dimensions (BIOMEDIN 371, CME 371, CS 371)

Cutting-edge research on computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules, cells, and everything in between. These techniques, which draw on approaches ranging from physics-based simulation to machine learning, play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course is devoted primarily to reading, presentation, discussion, and critique of papers describing important recent research developments. Prerequisite: CS 106A or equivalent, and an introductory course in biology or biochemistry. Recommended: some experience in mathematical modeling (does not need to be a formal course).
Terms: Win | Units: 3
Instructors: Dror, R. (PI)

BIOS 202: Hippocampal Field Potentials, an Introduction to CNS in Vitro Electrophysiology

Enrollment limited to graduate students in the School of Medicine; undergraduates may enroll with instructor consent. Introduces students to theory and practice of in vitro CNS electrophysiology. Lectures cover basic electrical and electrode theory, hippocampal anatomy, interpretation of these potentials, common pitfalls and misinterpretations, design of experiments using field potentials and other related topics. Practicum is hands on training in obtaining, recording and interpreting field potentials from in vitro hippocampal slices. Students develop skills in data collection, analysis and evaluation, art and design of electrophysiological studies of the brain.
Last offered: Winter 2013

BIOS 217: The Ultimate Face Book: Understanding Normal and Abnormal Craniofacial Development

How the face is assembled during embryonic development to gain insights into facial birth defects and new "regenerative medicine" approaches to reconstruct the face following disease or injury. Learn how "a man finds room in the few square inches of the face for the traits of all his ancestors; for the expression of all his history, and his wants."
Last offered: Winter 2013

BIOS 234: Personalized Genomic Medicine

Focuses on next-generation sequencing and its implications for personalized genomic medicine. Students gain hands-on experience with popular DNA sequence analysis tools as well as a practical understanding of the underlying algorithms and biomedicine.
Last offered: Spring 2016

BIOS 251: Biotechnology in the Natural World (SBIO 251)

Life can be found in some of the strangest and most inhospitable places of Earth. Whether in hot springs, oceanic depths, or dense rainforests, living organisms must be natural specialists to survive. This course explores a selection of strange and ingenious biomolecules that natural organisms have evolved in order to survive. Lectures will cover historical background as well as detailed investigations of the structure and function of selected biomolecules of interest. The majority of each lecture and discussion will focus on the adaptation of those molecules for fundamental and innovative approaches in modern biotechnology, especially in medicine and biophotonics. Key biophysical and biochemical techniques will be discussed as they are encountered within primary literature.
Last offered: Winter 2017

CHEM 10: Exploring Research and Problem Solving Across the Sciences

Development and practice of critical problem solving and study skills using wide variety of scientific examples that illustrate the broad yet integrated nature of current research. Student teams will have the opportunity to explore and present on topics revolving around five central issues: energy, climate change, water resources, medicine, and food & nutrition from a chemical perspective. Course offered in August prior to start of fall quarter.
Terms: Aut | Units: 2

CHEM 35: Organic Chemistry of Bioactive Molecules

Focuses on the structure and reactivity of natural and synthetic bioactive molecules. Covers fundamental concepts underlying chemical reactivity and the logic of chemical synthesis for an appreciation of the profound impact of organic chemistry on humankind in fields ranging from medicine to earth and planetary science. A three hour lab section provides hands on experience with modern chemical methods for preparative and analytical chemistry. Prerequisite: Chem 33.
Terms: Aut, Spr | Units: 5 | UG Reqs: GER: DB-NatSci

CHEM 141: The Chemical Principles of Life I

This is the first course in a two-quarter sequence ( Chem 141/143), which will examine biological science through the lens of chemistry. In this sequence students will gain a qualitative and quantitative understanding of the molecular logic of cellular processes, which include expression and transmission of the genetic code, enzyme kinetics, biosynthesis, energy storage and consumption, membrane transport, and signal transduction. Connections to foundational principles of chemistry will be made through structure-function analyses of biological molecules. Integrated lessons in structural, mechanistic, and physical chemistry will underscore how molecular science and molecular innovation have impacted biology and medicine. Prerequisites: CHEM 35, MATH 21 or equivalent.
Terms: Win | Units: 4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints