2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

91 - 100 of 204 results for: MS

MS&E 234: Data Privacy and Ethics

This course engages with ethical challenges in the modern practice of data science. The three main focuses are data privacy, personalization and targeting algorithms, and online experimentation. The focus on privacy raises both practical and theoretical considerations. As part of the module on experimentation, students are required to complete the Stanford IRB training for social and behavioral research. The course assumes a strong technical familiarity with the practice of machine learning and and data science. Recommended: 221, 226, CS 161, or equivalents.
Terms: Win | Units: 3

MS&E 235: Network Structure and Epidemics (MS&E 337)

Explores the underlying network structure of social, economic, and technological world using techniques from graph theory and economics, as well as machine learning and data analysis. Prerequisite: 226, CME 195, or equivalents. Recommended: 212.
Terms: Aut | Units: 3

MS&E 240: Accounting for Managers and Entrepreneurs (MS&E 140)

Non-majors and minors who have taken or are taking elementary accounting should not enroll. Introduction to accounting concepts and the operating characteristics of accounting systems. The principles of financial and cost accounting, design of accounting systems, techniques of analysis, and cost control. Interpretation and use of accounting information for decision making. Designed for the user of accounting information and not as an introduction to a professional accounting career. Enrollment limited. Admission by order of enrollment.
Terms: Aut, Win, Spr, Sum | Units: 3-4

MS&E 241: Economic Analysis

Principal methods of economic analysis of the production activities of firms, including production technologies, cost and profit, and perfect and imperfect competition; individual choice, including preferences and demand; and the market-based system, including price formation, efficiency, and welfare. Practical applications of the methods presented. Recommended: 211, ECON 50.
Terms: Win | Units: 3-4

MS&E 243: Energy and Environmental Policy Analysis

Concepts, methods, and applications. Energy/environmental policy issues such as automobile fuel economy regulation, global climate change, research and development policy, and environmental benefit assessment. Group project. Prerequisite: MS&E 241 or ECON 50, 51.
Terms: Spr | Units: 3
Instructors: Sweeney, J. (PI)

MS&E 245A: Investment Science

Basic concepts of modern quantitative finance and investments. Focus is on the financial theory and empirical evidence that are useful for investment decisions. Topics: basic interest rates; evaluating investments: present value and internal rate of return; fixed-income markets: bonds, yield, duration, portfolio immunization; term structure of interest rates; measuring risk: volatility and value at risk; designing optimal portfolios; risk-return tradeoff: capital asset pricing model and extensions. No prior knowledge of finance is required. Concepts are applied in a stock market simulation with real data. Prerequisite: basic preparation in probability, statistics, and optimization.
Terms: Aut | Units: 3-4

MS&E 245B: Advanced Investment Science

Formerly MS&E 342. Topics: forwards and futures contracts, continuous and discrete time models of stock price behavior, geometric Brownian motion, Ito's lemma, basic options theory, Black-Scholes equation, advanced options techniques, models and applications of stochastic interest rate processes, and optimal portfolio growth. Computational issues and general theory. Teams work on independent projects. Prerequisite: 245A.
Terms: Spr | Units: 3
Instructors: Giesecke, K. (PI)

MS&E 246: Financial Risk Analytics

Practical introduction to financial risk analytics. The focus is on data-driven modeling, computation, and statistical estimation of credit and market risks. Case studies based on real data will be emphasized throughout the course. Topics include mortgage risk, asset-backed securities, commercial lending, consumer delinquencies, online lending, derivatives risk. Tools from machine learning and statistics will be developed. Data sources will be discussed. The course is intended to enable students to design and implement risk analytics tools in practice. Prerequisites: MS&E 245A or similar, some background in probability and statistics, working knowledge of R, Matlab, or similar computational/statistical package.
Terms: Win | Units: 3

MS&E 249: Corporate Financial Management (MS&E 146)

Key functions of finance in both large and small companies, and the core concepts and key analytic tools that provide their foundation. Making financing decisions, evaluating investments, and managing cashflow, profitability and risk. Designing performance metrics to effectively measure and align the activities of functional groups and individuals within the firm. Structuring relationships with key customers, partners and suppliers. Prerequisite: 145, 245A, or equivalent.
Terms: Win | Units: 3-4

MS&E 250A: Engineering Risk Analysis

The techniques of analysis of engineering systems for risk management decisions involving trade-offs (technical, human, environmental aspects). Elements of decision analysis; probabilistic risk analysis (fault trees, event trees, systems dynamics); economic analysis of failure consequences (human safety and long-term economic discounting); and case studies such as space systems, nuclear power plants, and medical systems. Public and private sectors. Prerequisites: probability, decision analysis, stochastic processes, and convex optimization.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints