2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 43 results for: ME 1: Introduction to Mechanical Engineering

ENGR 50: Introduction to Materials Science, Nanotechnology Emphasis

The structure, bonding, and atomic arrangements in materials leading to their properties and applications. Topics include electronic and mechanical behavior, emphasizing nanotechnology, solid state devices, and advanced structural and composite materials.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 50E: Introduction to Materials Science, Energy Emphasis

Materials structure, bonding and atomic arrangements leading to their properties and applications. Topics include electronic, thermal and mechanical behavior; emphasizing energy related materials and challenges.
Terms: Aut | Units: 4 | UG Reqs: WAY-SMA

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Melosh, N. (PI)

ENGR 240: Introduction to Micro and Nano Electromechanical Systems

Miniaturization technologies now have important roles in materials, mechanical, and biomedical engineering practice, in addition to being the foundation for information technology. This course will target an audience of first-year engineering graduate students and motivated senior-level undergraduates, with the goal of providing an introduction to M/NEMS fabrication techniques, selected device applications, and the design tradeoffs in developing systems. The course has no specific prerequisites, other than graduate or senior standing in engineering; otherwise, students will require permission of the instructors.
Terms: Aut | Units: 3

ME 12AX: Painting Engaging Stories

This course is an introduction to the practice of fine art as the catalyst for engaging in your everyday story. Using watercolor techniques students will investigate how the practice of fine art enhances your capacity to refocus and amplifies your ability to engage in the artistic expression of your story and the stories around you.

nDiscover how to apply painting techniques to make your observations and reflections a daily commitment through the studio driven methods of art and psychology. This course is designed to introduce students to multiple practices in the fine art of painting, using media such as water color, ink, and painting transfers. With an emphasis on aesthetics and the applied psychology of everyday experience, students will have the opportunity to increase their creative confidence. Work is designed to enhance your attention and sensory appreciation to everyday experiences, in-class and during short field trips.
Terms: Sum | Units: 2 | UG Reqs: WAY-CE
Instructors: Karanian, B. (PI)

ME 17: The Science of Flames

This course is about what causes flames to look like they do and about what causes them to propagate. The physical and chemical phenomena that govern behaviors of flames will constitute the topics for discussion. The basic principles that govern flame phenomena include the conservation of mass, the first law of thermodynamics, and the momentum principle. Since flame processes are controlled by the rates of chemical reactions, these basic principles will be applied when account is made for the chemical transformations that occur when reactant bonds are broken and new bonds are formed, producing combustion products. In essence, this course serves as an introduction to combustion science.
Terms: Sum | Units: 3
Instructors: Mitchell, R. (PI)

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 104B: Designing Your Life

The course employs a design thinking approach to help students develop a point of view about their career. The course focuses on an introduction to design thinking, the integration of work and worldview, and practices that support vocation formation. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Open to juniors, seniors and 5th year coterms, all majors. Offered in two formats: 10-week class (2-units), or workshop (1-unit). See section notes for details. Additional course information at http://www.designingyourlife.org.
Terms: Aut, Win, Spr | Units: 2

ME 104S: Designing Your Stanford (EDUC 118S)

DYS uses a Design Thinking approach to help Freshmen and Sophomores learn practical tools and ideas to make the most of their Stanford experience. Topics include the purpose of college, major selection, educational wayfinding, and innovating college outcomes - all applied through an introduction to Design Thinking. This seminar class incorporates small group discussion, in-class activities, field exercises, personal reflection, and individual coaching. Admission to be confirmed by email to Axess registered students prior to first class session. More information at www.designingyourstanford.org.
Terms: Aut, Win, Spr | Units: 2

ME 114: Consumer Analytical Product Design (CAPD)

Holistic design experience for consumer product. Integration of models of engineering function, environmental impact, manufacturing costs, and market conditions. Introduction to life-cycle-analysis to capture environmental impact. Introduction to modeling micro economics, market models, and consumer surveying as applied in product design. Introduction to consumer product cost modeling. Draw from past coursework to build engineering function model. Student teams build and link these models in an optimization framework to maximize profitability and minimize environmental impact. Build prototypes for engineering function and form expression. ME Design Capstone Experience option.
Terms: Spr | Units: 4
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints