2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

21 - 30 of 73 results for: MATSCI

MATSCI 196: Defects in Crystalline Solids (MATSCI 206)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Chueh, W. (PI)

MATSCI 197: Rate Processes in Materials (MATSCI 207)

Diffusion and phase transformations in solids. Diffusion topics: Fick's laws, atomic theory of diffusion, and diffusion in alloys. Phase transformation topics: nucleation, growth, diffusional transformations, spinodal decomposition, and interface phenomena. Material builds on the mathematical, thermodynamic, and statistical mechanical foundations in the prerequisites. Prerequisites: 194/204. Undergraduates register for 197 for 4 units; graduates register for 207 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: McIntyre, P. (PI)

MATSCI 198: Mechanical Properties of Materials (MATSCI 208)

Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure and mechanical properties. Elastic, anelastic, and plastic properties of materials. The relations between stress, strain, strain rate, and temperature for plastically deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue and their controlling mechanisms. Prerequisites: 193/203. Undergraduates register for 198 for 4 units; graduates register for 208 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 199: Electronic and Optical Properties of Solids (MATSCI 209)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 202: Materials Chemistry (MATSCI 192)

An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry. Using both classroom lectures and journal discussions, students will gain an understanding of and be well-positioned to contribute to the frontiers of materials chemistry, ranging from solar-fuel generation to next-generation cancer treatments. Undergraduates register in 192 for 4 units; graduates register in 202 for 3 units.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Cui, Y. (PI)

MATSCI 203: Atomic Arrangements in Solids (MATSCI 193)

Atomic arrangements in perfect and imperfect solids, especially important metals, ceramics, and semiconductors. Elements of formal crystallography, including development of point groups and space groups. Undergraduates register in 193 for 4 units; graduates register in 203 for 3 units.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Reed, E. (PI)

MATSCI 204: Thermodynamics and Phase Equilibria (MATSCI 194)

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: Salleo, A. (PI)

MATSCI 205: Waves and Diffraction in Solids (MATSCI 195, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: Clemens, B. (PI)

MATSCI 206: Defects in Crystalline Solids (MATSCI 196)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Chueh, W. (PI)

MATSCI 207: Rate Processes in Materials (MATSCI 197)

Diffusion and phase transformations in solids. Diffusion topics: Fick's laws, atomic theory of diffusion, and diffusion in alloys. Phase transformation topics: nucleation, growth, diffusional transformations, spinodal decomposition, and interface phenomena. Material builds on the mathematical, thermodynamic, and statistical mechanical foundations in the prerequisites. Prerequisites: 194/204. Undergraduates register for 197 for 4 units; graduates register for 207 for 3 units.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: McIntyre, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints