2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

21 - 30 of 34 results for: MATSCI

MATSCI 208: Mechanical Properties of Materials (MATSCI 198)

Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure and mechanical properties. Elastic, anelastic, and plastic properties of materials. The relations between stress, strain, strain rate, and temperature for plastically deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue and their controlling mechanisms. Prerequisites: MATSCI 193/203. Undergraduates register for 198 for 4 units; graduates register for 208 for 3 units.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

MATSCI 209: Electronic and Optical Properties of Solids (MATSCI 199)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: MATSCI 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

MATSCI 210: Organic and Biological Materials (MATSCI 190)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Appel, E. (PI)

MATSCI 230: Materials Science Colloquium

May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 299: Practical Training

Educational opportunities in high-technology research and development labs in industry. Qualified graduate students engage in internship work and integrate that work into their academic program. Following the internship, students complete a research report outlining their work activity, problems investigated, key results, and any follow-on projects they expect to perform. Student is responsible for arranging own employment. See department student services manager before enrolling.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 300: Ph.D. Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 316: Nanoscale Science, Engineering, and Technology

This course covers important aspects of nanotechnology in nanomaterials synthesis and fabrication, novel property at the nanoscale, tools and applications: a variety of nanostructures including nanocrystal, nanowire, carbon nanotube, graphene, nanoporous material, block copolymer, and self-assembled monolayer; nanofabrication techniques developed over the past 20 years; thermodynamic, electronic and optical property; applications in solar cells, batteries, biosensors and electronics. Other nanotechnology topics may be explored through a group project. SCPD offering.
Terms: Spr, Sum | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 322: Transmission Electron Microscopy Laboratory

Practical techniques in transmission electron microscopy (TEM): topics include microscope operation and alignment, diffraction modes and analysis, bright-field/dark-field imaging, high resolution and aberration corrected imaging, scanning TEM (STEM) imaging, x-ray energy dispersive spectrometry (EDS) and electron energy loss spectrometry (EELS) for compositional analysis and mapping. Prerequisite: 321, consent of instructor. Enrollment limited to 12.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Marshall, A. (PI)

MATSCI 343: Organic Semiconductors for Electronics and Photonics

The science of organic semiconductors and their use in electronic and photonic devices. Topics: methods for fabricating thin films and devices; relationship between chemical structure and molecular packing on properties such as band gap, charge carrier mobility and luminescence efficiency; doping; field-effect transistors; light-emitting diodes; lasers; biosensors; photodetectors and photovoltaic cells.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Salleo, A. (PI)

MATSCI 381: Biomaterials in Regenerative Medicine (BIOE 361)

Materials design and engineering for regenerative medicine. How materials interact with cells through their micro- and nanostructure, mechanical properties, degradation characteristics, surface chemistry, and biochemistry. Examples include novel materials for drug and gene delivery, materials for stem cell proliferation and differentiation, and tissue engineering scaffolds. Prerequisites: undergraduate chemistry, and cell/molecular biology or biochemistry.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints