## MATH 77Q: Probability and gambling

One of the earliest probabilistic discussions was in 1654 between two French mathematicians, Pascal and Fermat, on the following question: 'If a pair of six-sided dice is thrown 24 times, should you bet even money on the occurrence of at least one `double six'?' Shortly after the discussion, Huygens, a Dutch scientist, published De Ratiociniis in Ludo Aleae (The Value of all Chances in Games of Fortune) in 1657; this is considered to be the first treatise on probability. Due to the inherent appeal of games of chance, probability theory soon became popular, and the subject underwent rapid development in the 18th century with contributions from mathematical giants, such as Bernoulli, de Moivre, and Laplace. There are two fairly different lines of thought associated with applications of probability: the solution of betting/gambling and the analysis of statistical data related to quantitative subjects such as mortality tables and insurance rates. In this Introsem, we will discuss poker and
more »

One of the earliest probabilistic discussions was in 1654 between two French mathematicians, Pascal and Fermat, on the following question: 'If a pair of six-sided dice is thrown 24 times, should you bet even money on the occurrence of at least one `double six'?' Shortly after the discussion, Huygens, a Dutch scientist, published De Ratiociniis in Ludo Aleae (The Value of all Chances in Games of Fortune) in 1657; this is considered to be the first treatise on probability. Due to the inherent appeal of games of chance, probability theory soon became popular, and the subject underwent rapid development in the 18th century with contributions from mathematical giants, such as Bernoulli, de Moivre, and Laplace. There are two fairly different lines of thought associated with applications of probability: the solution of betting/gambling and the analysis of statistical data related to quantitative subjects such as mortality tables and insurance rates. In this Introsem, we will discuss poker and other games of chance, such as daily fantasy sports, from the perspective of risk analysis. This Introsem does not require any programming knowledge, but some experience with Excel, MATLAB, R, and/or Python will enhance your experience in our discussion of daily fantasy sports. Students should be familiar with all material from
Math 51. No prior knowledge of sports and games of chance is required. Students must apply through the IntroSem application process.

Terms: Win, Spr
| Units: 3
| UG Reqs: WAY-FR

Instructors:
Kim, G. (PI)

Filter Results: