MATH 256A: Partial Differential Equations
The theory of linear and nonlinear partial differential equations, beginning with linear theory involving use of Fourier transform and Sobolev spaces. Topics: Schauder and L2 estimates for elliptic and parabolic equations; De Giorgi-Nash-Moser theory for elliptic equations; nonlinear equations such as the minimal surface equation, geometric flow problems, and nonlinear hyperbolic equations. NOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Win
| Units: 3
Instructors:
Malinnikova, E. (PI)
Filter Results: