MATH 228: Stochastic Methods in Engineering (CME 308, MS&E 324)
The basic limit theorems of probability theory and their application to maximum likelihood estimation. Basic Monte Carlo methods and importance sampling. Markov chains and processes, random walks, basic ergodic theory and its application to parameter estimation. Discrete time stochastic control and Bayesian filtering. Diffusion approximations, Brownian motion and an introduction to stochastic differential equations. Examples and problems from various applied areas. Prerequisites: exposure to probability and background in analysis.
Terms: Spr
| Units: 3
Instructors:
Glynn, P. (PI)
Filter Results: