2020-2021 2021-2022 2022-2023 2023-2024 2024-2025
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: MATH151

CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: knowledge of basic computer science principles and skills at a level sufficient to write a reasonably non-trivial computer program in Python/NumPy to the equivalency of CS106A, CS106B, or CS106X, familiarity with probability theory to the equivalency of CS 109, MATH151, or STATS 116, and familiarity with multivariable calculus and linear algebra to the equivalency of MATH51 or CS205.
Terms: Aut, Win | Units: 3-4

MATH 151: Introduction to Probability Theory

A proof-oriented development of basic probability theory. Counting; axioms of probability; conditioning and independence; expectation and variance; discrete and continuous random variables and distributions; joint distributions and dependence; Central Limit Theorem and laws of large numbers. CS majors can petition to use Math 151 in place of CS 109, provided they expect to take either CS 228 or CS 229 as well. Prerequisite: Math 61CM, or Math 52 and either Math 56 or Math 115 (or equivalent).
Terms: Win | Units: 4 | UG Reqs: GER:DB-Math, WAY-FR
Instructors: Thoma, E. (PI)

STATS 229: Machine Learning (CS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: knowledge of basic computer science principles and skills at a level sufficient to write a reasonably non-trivial computer program in Python/NumPy to the equivalency of CS106A, CS106B, or CS106X, familiarity with probability theory to the equivalency of CS 109, MATH151, or STATS 116, and familiarity with multivariable calculus and linear algebra to the equivalency of MATH51 or CS205.
Terms: Aut, Win, Spr | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints