2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

51 - 60 of 92 results for: MATH ; Currently searching offered courses. You can also include unoffered courses

MATH 199: Independent Work

For math majors only. Undergraduates pursue a reading program; topics limited to those not in regular department course offerings. Credit can fulfill the elective requirement for math majors. Approval of Undergraduate Affairs Committee is required to use credit for honors majors area requirement. Contact department student services specialist to enroll.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

MATH 205A: Real Analysis

Basic measure theory and the theory of Lebesgue integration. Prerequisite: 171 or equivalent.
Terms: Aut | Units: 3

MATH 205B: Real Analysis

Point set topology, basic functional analysis, Fourier series, and Fourier transform. Prerequisites: 171 and 205A or equivalent.
Terms: Win | Units: 3

MATH 205C: Real Analysis

Continuation of 205B.
Terms: Spr | Units: 3
Instructors: Zhu, X. (PI)

MATH 210A: Modern Algebra I

Basic commutative ring and module theory, tensor algebra, homological constructions, linear and multilinear algebra, canonical forms and Jordan decomposition. Prerequisite: 122 or equivalent.
Terms: Aut | Units: 3

MATH 210B: Modern Algebra II

Continuation of 210A. Topics in field theory, commutative algebra, and algebraic geometry. Prerequisites: 210A, and 121 or equivalent.
Terms: Win | Units: 3

MATH 210C: Lie Theory

Topics in Lie groups, Lie algebras, and/or representation theory. Prerequisite: math 210B. May be repeated for credit.
Terms: Spr | Units: 3 | Repeatable for credit

MATH 215A: Algebraic Topology

Topics: fundamental group and covering spaces, basics of homotopy theory, homology and cohomology (simplicial, singular, cellular), products, introduction to topological manifolds, orientations, Poincare duality. Prerequisites: 113, 120, and 171.
Terms: Aut | Units: 3

MATH 215B: Differential Topology

Topics: Basics of differentiable manifolds (tangent spaces, vector fields, tensor fields, differential forms), embeddings, tubular neighborhoods, integration and Stokes¿ Theorem, deRham cohomology, intersection theory via Poincare duality, Morse theory. Prerequisite: 215A
Terms: Win | Units: 3

MATH 215C: Differential Geometry

This course will be an introduction to Riemannian Geometry. Topics will include the Levi-Civita connection, Riemann curvature tensor, Ricci and scalar curvature, geodesics, parallel transport, completeness, geodesics and Jacobi fields, and comparison techniques. Prerequisites 146 or 215B
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints