MATH 196: Undergraduate Colloquium
Weekly lectures by different experts on topics in pure and applied mathematics that go beyond the standard curriculum. May be repeated for credit for up to 3 units. Does not count toward the math major or minor.
Terms: Aut, Win, Spr

Units: 1

Repeatable for credit

Grading: Satisfactory/No Credit
Instructors:
Bump, D. (PI)
;
Luu, M. (PI)
MATH 197: Senior Honors Thesis
(Staff) May be repeated 3 times for a max of 9 units.
Terms: Aut, Win, Spr

Units: 16

Repeatable for credit

Grading: Letter or Credit/No Credit
Instructors:
Brendle, S. (PI)
;
Brumfiel, G. (PI)
;
Bump, D. (PI)
...
more instructors for MATH 197 »
Instructors:
Brendle, S. (PI)
;
Brumfiel, G. (PI)
;
Bump, D. (PI)
;
Candes, E. (PI)
;
Cantarero Lopez, J. (PI)
;
Carlsson, G. (PI)
;
Cohen, R. (PI)
;
Conrad, B. (PI)
;
Demanet, L. (PI)
;
Dembo, A. (PI)
;
Diaconis, P. (PI)
;
Eliashberg, Y. (PI)
;
Feferman, S. (PI)
;
Finn, R. (PI)
;
Galatius, S. (PI)
;
Holmes, S. (PI)
;
Ionel, E. (PI)
;
Kahle, M. (PI)
;
Katznelson, Y. (PI)
;
Keller, J. (PI)
;
Kerckhoff, S. (PI)
;
Kojima, F. (PI)
;
Li, J. (PI)
;
Liu, T. (PI)
;
Lucianovic, M. (PI)
;
Mazzeo, R. (PI)
;
Milgram, R. (PI)
;
Milgrom, P. (PI)
;
Mints, G. (PI)
;
Ornstein, D. (PI)
;
Osserman, R. (PI)
;
Papanicolaou, G. (PI)
;
Ryzhik, L. (PI)
;
Schoen, R. (PI)
;
Simon, L. (PI)
;
Soundararajan, K. (PI)
;
Vakil, R. (PI)
;
Vasy, A. (PI)
;
Venkatesh, A. (PI)
;
White, B. (PI)
;
Wieczorek, W. (PI)
MATH 205A: Real Analysis
Basic measure theory and the theory of Lebesgue integration. Prerequisite: 171 or equivalent.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Simon, L. (PI)
MATH 205B: Real Analysis
Point set topology, basic functional analysis, Fourier series, and Fourier transform. Prerequisites: 171 and 205A or equivalent.
Terms: Win

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Mazzeo, R. (PI)
MATH 215A: Complex Analysis, Geometry, and Topology
Analytic functions, complex integration, Cauchy's theorem, residue theorem, argument principle, conformal mappings, Riemann mapping theorem, Picard's theorem, elliptic functions, analytic continuation and Riemann surfaces.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Ryzhik, L. (PI)
MATH 216A: Introduction to Algebraic Geometry
Algebraic curves, algebraic varieties, sheaves, cohomology, RiemannRoch theorem. Classification of algebraic surfaces, moduli spaces, deformation theory and obstruction theory, the notion of schemes. May be repeated for credit. Prerequisites: 210ABC or equivalent.
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
Instructors:
Li, Z. (PI)
MATH 216B: Introduction to Algebraic Geometry
Continuation of 216A. May be repeated for credit.
Terms: Win

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
Instructors:
Vakil, R. (PI)
MATH 216C: Introduction to Algebraic Geometry
Continuation of 216B. May be repeated for credit.
Terms: Spr

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
Instructors:
Vakil, R. (PI)
MATH 217A: Differential Geometry
Smooth manifolds and submanifolds, tensors and forms, Lie and exterior derivative, DeRham cohomology, distributions and the Frobenius theorem, vector bundles, connection theory, parallel transport and curvature, affine connections, geodesics and the exponential map, connections on the principal frame bundle. Prerequisite: 215C or equivalent.
Terms: Spr

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Mazzeo, R. (PI)
Filter Results: