2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

91 - 100 of 165 results for: MATH

MATH 216A: Introduction to Algebraic Geometry

Algebraic curves, algebraic varieties, sheaves, cohomology, Riemann-Roch theorem. Classification of algebraic surfaces, moduli spaces, deformation theory and obstruction theory, the notion of schemes. May be repeated for credit. Prerequisites: 210ABC or equivalent.
| Repeatable for credit

MATH 216B: Introduction to Algebraic Geometry

Continuation of 216A. May be repeated for credit.
| Repeatable for credit

MATH 216C: Introduction to Algebraic Geometry

Continuation of 216B. May be repeated for credit.
| Repeatable for credit

MATH 221A: Mathematical Methods of Imaging (CME 321A)

Image denoising and deblurring with optimization and partial differential equations methods. Imaging functionals based on total variation and l-1 minimization. Fast algorithms and their implementation.

MATH 221B: Mathematical Methods of Imaging (CME 321B)

Array imaging using Kirchhoff migration and beamforming, resolution theory for broad and narrow band array imaging in homogeneous media, topics in high-frequency, variable background imaging with velocity estimation, interferometric imaging methods, the role of noise and inhomogeneities, and variational problems that arise in optimizing the performance of array imaging algorithms.

MATH 222: Computational Methods for Fronts, Interfaces, and Waves

High-order methods for multidimensional systems of conservation laws and Hamilton-Jacobi equations (central schemes, discontinuous Galerkin methods, relaxation methods). Level set methods and fast marching methods. Computation of multi-valued solutions. Multi-scale analysis, including wavelet-based methods. Boundary schemes (perfectly matched layers). Examples from (but not limited to) geometrical optics, transport equations, reaction-diffusion equations, imaging, and signal processing.

MATH 224: Topics in Mathematical Biology

Mathematical models for biological processes based on ordinary and partial differential equations. Topics: population and infectious diseases dynamics, biological oscillators, reaction diffusion models, biological waves, and pattern formation. Prerequisites: 53 and 131, or equivalents.

MATH 227: Partial Differential Equations and Diffusion Processes

Parabolic and elliptic partial differential equations and their relation to diffusion processes. First order equations and optimal control. Emphasis is on applications to mathematical finance. Prerequisites: MATH 131 and MATH 136/ STATS 219, or equivalents.
Instructors: Menz, G. (PI)

MATH 231A: An Introduction to Random Matrix Theory (STATS 351A)

Patterns in the eigenvalue distribution of typical large matrices, which also show up in physics (energy distribution in scattering experiments), combinatorics (length of longest increasing subsequence), first passage percolation and number theory (zeros of the zeta function). Classical compact ensembles (random orthogonal matrices). The tools of determinental point processes.

MATH 231C: Free Probability

Background from operator theory, addition and multiplication theorems for operators, spectral properties of infinite-dimensional operators, the free additive and multiplicative convolutions of probability measures and their classical counterparts, asymptotic freeness of large random matrices, and free entropy and free dimension. Prerequisite: STATS 310B or equivalent.
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints