2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

131 - 140 of 165 results for: MATH

MATH 271: The H-Principle

The language of jets. Thom transversality theorem. Holonomic approximation theorem. Applications: immersion theory and its generaliazations. Differential relations and Gromov's h-principle for open manifolds. Applications to symplectic geometry. Microflexibility. Mappings with simple singularities and their applications. Method of convex integration. Nash-Kuiper C^1-isometric embedding theorem.

MATH 272: Topics in Partial Differential Equations

| Repeatable for credit
Instructors: Ryzhik, L. (PI)

MATH 273A: Quantum Mechanics I

MATH 273B: QUANTUM MECHANICS II

MATH 280: Evolution Equations in Differential Geometry

| Repeatable for credit

MATH 282A: Low Dimensional Topology

The theory of surfaces and 3-manifolds. Curves on surfaces, the classification of diffeomorphisms of surfaces, and Teichmuller space. The mapping class group and the braid group. Knot theory, including knot invariants. Decomposition of 3-manifolds: triangulations, Heegaard splittings, Dehn surgery. Loop theorem, sphere theorem, incompressible surfaces. Geometric structures, particularly hyperbolic structures on surfaces and 3-manifolds. May be repeated for credit up to 6 total units.
| Repeatable for credit

MATH 282B: Homotopy Theory

Homotopy groups, fibrations, spectral sequences, simplicial methods, Dold-Thom theorem, models for loop spaces, homotopy limits and colimits, stable homotopy theory. May be repeated for credit up to 6 total units.
| Repeatable for credit
Instructors: Galatius, S. (PI)

MATH 282C: Fiber Bundles and Cobordism

Possible topics: principal bundles, vector bundles, classifying spaces. Connections on bundles, curvature. Topology of gauge groups and gauge equivalence classes of connections. Characteristic classes and K-theory, including Bott periodicity, algebraic K-theory, and indices of elliptic operators. Spectral sequences of Atiyah-Hirzebruch, Serre, and Adams. Cobordism theory, Pontryagin-Thom theorem, calculation of unoriented and complex cobordism. May be repeated for credit up to 6 total units.
| Repeatable for credit

MATH 283: Topics in Algebraic and Geometric Topology

May be repeated for credit.
| Repeatable for credit

MATH 283A: Topics in Topology

Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints