2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

71 - 80 of 145 results for: MATH

MATH 210C: Lie Theory

Topics in Lie groups, Lie algebras, and/or representation theory. Prerequisite: math 210B. May be repeated for credit.
Terms: Spr | Units: 3 | Repeatable for credit

MATH 215A: Algebraic Topology

Topics: fundamental group and covering spaces, basics of homotopy theory, homology and cohomology (simplicial, singular, cellular), products, introduction to topological manifolds, orientations, Poincare duality. Prerequisites: 113, 120, and 171.
Terms: Aut | Units: 3

MATH 215B: Differential Topology

Topics: Basics of differentiable manifolds (tangent spaces, vector fields, tensor fields, differential forms), embeddings, tubular neighborhoods, integration and Stokes¿ Theorem, deRham cohomology, intersection theory via Poincare duality, Morse theory. Prerequisite: 215A
Terms: Win | Units: 3

MATH 215C: Differential Geometry

This course will be an introduction to Riemannian Geometry. Topics will include the Levi-Civita connection, Riemann curvature tensor, Ricci and scalar curvature, geodesics, parallel transport, completeness, geodesics and Jacobi fields, and comparison techniques. Prerequisites 146 or 215B
Terms: Spr | Units: 3

MATH 216A: Introduction to Algebraic Geometry

Algebraic curves, algebraic varieties, sheaves, cohomology, Riemann-Roch theorem. Classification of algebraic surfaces, moduli spaces, deformation theory and obstruction theory, the notion of schemes. May be repeated for credit. Prerequisites: 210ABC or equivalent.
Last offered: Autumn 2015 | Repeatable for credit

MATH 216B: Introduction to Algebraic Geometry

Continuation of 216A. May be repeated for credit.
Last offered: Winter 2016 | Repeatable for credit

MATH 216C: Introduction to Algebraic Geometry

Continuation of 216B. May be repeated for credit.
Last offered: Spring 2016 | Repeatable for credit

MATH 217C: Complex Differential Geometry

Complex structures, almost complex manifolds and integrability, Hermitian and Kahler metrics, connections on complex vector bundles, Chern classes and Chern-Weil theory, Hodge and Dolbeault theory, vanishing theorems, Calabi-Yau manifolds, deformation theory.
Last offered: Winter 2015 | Repeatable for credit

MATH 220: Partial Differential Equations of Applied Mathematics (CME 303)

First-order partial differential equations; method of characteristics; weak solutions; elliptic, parabolic, and hyperbolic equations; Fourier transform; Fourier series; and eigenvalue problems. Prerequisite: Basic coursework in multivariable calculus and ordinary differential equations, and some prior experience with a proof-based treatment of the material as in Math 171 or Math 61CM (formerly Math 51H).
Terms: Aut | Units: 3

MATH 221A: Mathematical Methods of Imaging (CME 321A)

Image denoising and deblurring with optimization and partial differential equations methods. Imaging functionals based on total variation and l-1 minimization. Fast algorithms and their implementation.
Last offered: Winter 2014
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints