2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

71 - 80 of 145 results for: MATH

MATH 210C: Lie Theory

Topics in Lie groups, Lie algebras, and/or representation theory. Prerequisite: math 210B. May be repeated for credit.
Terms: Spr | Units: 3 | Repeatable for credit

MATH 215A: Algebraic Topology

Topics: fundamental group and covering spaces, basics of homotopy theory, homology and cohomology (simplicial, singular, cellular), products, introduction to topological manifolds, orientations, Poincare duality. Prerequisites: 113, 120, and 171.
Terms: Aut | Units: 3

MATH 215B: Differential Topology

Topics: Basics of differentiable manifolds (tangent spaces, vector fields, tensor fields, differential forms), embeddings, tubular neighborhoods, integration and Stokes¿ Theorem, deRham cohomology, intersection theory via Poincare duality, Morse theory. Prerequisite: 215A
Terms: Win | Units: 3

MATH 215C: Differential Geometry

This course will be an introduction to Riemannian Geometry. Topics will include the Levi-Civita connection, Riemann curvature tensor, Ricci and scalar curvature, geodesics, parallel transport, completeness, geodesics and Jacobi fields, and comparison techniques. Prerequisites 146 or 215B
Terms: Spr | Units: 3

MATH 216A: Introduction to Algebraic Geometry

Algebraic curves, algebraic varieties, sheaves, cohomology, Riemann-Roch theorem. Classification of algebraic surfaces, moduli spaces, deformation theory and obstruction theory, the notion of schemes. May be repeated for credit. Prerequisites: 210ABC or equivalent.
Last offered: Autumn 2015 | Repeatable for credit

MATH 216B: Introduction to Algebraic Geometry

Continuation of 216A. May be repeated for credit.
Last offered: Winter 2016 | Repeatable for credit

MATH 216C: Introduction to Algebraic Geometry

Continuation of 216B. May be repeated for credit.
Last offered: Spring 2016 | Repeatable for credit

MATH 217C: Complex Differential Geometry

Complex structures, almost complex manifolds and integrability, Hermitian and Kahler metrics, connections on complex vector bundles, Chern classes and Chern-Weil theory, Hodge and Dolbeault theory, vanishing theorems, Calabi-Yau manifolds, deformation theory.
Last offered: Winter 2015 | Repeatable for credit

MATH 220: Partial Differential Equations of Applied Mathematics (CME 303)

First-order partial differential equations; method of characteristics; weak solutions; elliptic, parabolic, and hyperbolic equations; Fourier transform; Fourier series; and eigenvalue problems. Prerequisite: Basic coursework in multivariable calculus and ordinary differential equations, and some prior experience with a proof-based treatment of the material as in Math 171 or Math 61CM (formerly Math 51H).
Terms: Aut | Units: 3

MATH 221A: Mathematical Methods of Imaging (CME 321A)

Image denoising and deblurring with optimization and partial differential equations methods. Imaging functionals based on total variation and l-1 minimization. Fast algorithms and their implementation.
Last offered: Winter 2014
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints