2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 63 results for: GEOPHYS ; Currently searching offered courses. You can also include unoffered courses

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: Segall, P. (PI)

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Beroza, G. (PI)

GEOPHYS 100: Directed Reading

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-2

GEOPHYS 101: Frontiers of Geophysical Research at Stanford (GEOPHYS 201)

Required for new students entering the department and undergraduate majors. Department faculty introduce the frontiers of research problems and methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be. Graduate students register for 1 unit (Mondays only), undergraduates for 3 units which include a discussion section (Mondays and Wednesdays). Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Repeatable for credit

GEOPHYS 104: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: Knight, R. (PI)

GEOPHYS 110: Introduction to the Foundations of Contemporary Geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 112: Exploring Geosciences with MATLAB (ENERGY 112)

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3

GEOPHYS 118X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, ESS 218X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to more »
The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-AQR, WAY-SI

GEOPHYS 118Y: Shaping the Future of the Bay Area (CEE 118Y, CEE 218Y, ESS 118Y, ESS 218Y, GEOPHYS 218Y)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Win | Units: 1-5

GEOPHYS 118Z: Shaping the Future of the Bay Area (CEE 118Z, CEE 218Z, GEOPHYS 218Z)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Spr | Units: 1-5
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints