2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

21 - 30 of 105 results for: ESS

ESS 132: Evolution of Earth Systems (EARTHSYS 132, EARTHSYS 232, ESS 232)

This course examines biogeochemical cycles and how they developed through the interaction between the atmosphere, hydrosphere, biosphere, and lithosphere. Emphasis is on the long-term carbon cycle and how it is connected to other biogeochemical cycles on Earth. The course consists of lectures, discussion of research papers, and quantitative modeling of biogeochemical cycles. Students produce a model on some aspect of the cycles discussed in this course. Grades based on class interaction, student presentations, and the modeling project.
Terms: Win | Units: 4 | Grading: Letter (ABCD/NP)

ESS 135: Community Leadership

Offered through Residential Education to residents of Castano House, Manzanita Park. Topics include: emotional intelligence, leadership styles, listening, facilitating meetings, group dynamics and motivation, finding purpose, fostering resilience. Students will lead discussions on personal development, relationships, risky behaviors, race, ethnicity, spirituality, integrity.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Jones, J. (PI)

ESS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)

ESS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, EARTHSYS 146A, EARTHSYS 246A, ESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

ESS 146B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (CEE 162I, CEE 262I, EARTHSYS 146B, EARTHSYS 246B, ESS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 162D or CEE 262D, or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

ESS 148: Introduction to Physical Oceanography (CEE 162D, CEE 262D, EARTHSYS 164)

Formerly CEE 164. The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci | Grading: Letter (ABCD/NP)
Instructors: Fong, D. (PI)

ESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

ESS 152: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

ESS 156: Soil and Water Chemistry (EARTHSYS 156, EARTHSYS 256, ESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Terms: alternate years, given next year | Units: 1-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints