## ENGR 103: Public Speaking (ENGR 203)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.

Terms: Aut, Win, Spr
| Units: 3

Instructors:
Vassar, M. (PI)

## ENGR 120: Fundamentals of Petroleum Engineering (ENERGY 120)

Lectures, problems, field trip. Engineering topics in petroleum recovery; origin, discovery, and development of oil and gas. Chemical, physical, and thermodynamic properties of oil and natural gas. Material balance equations and reserve estimates using volumetric calculations. Gas laws. Single phase and multiphase flow through porous media.

Terms: Aut
| Units: 3
| UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

## ENGR 131: Ethical Issues in Engineering

Fundamental ethical responsibilities of engineers. Ethical responsibilities to society, employers, colleagues, and clients; ethics, cost-benefit-risk analysis, and safety; informed consent; ethical responsibilities of radical engineering design; the ethics of whistleblowing; ethical issues engineers face as expert witnesses, consultants, and managers; ethical issues in engineering research, design, testing, and manufacturing; ethical issues arising from engineering work in foreign countries; and ethical issues arising from the social, cultural, and environmental contexts of contemporary engineering work. Contemporary case studies. Enrollment limited to 24. Each student seeking admission to the class must send an application to the instructor at mcginn@stanford.edu by 5 PM, Monday, September 24. The application must contain her/his name, year of study, major, and case, limited to 300 words, for why s/he should be given a slot in the seminar. Students will be emailed whether they have been admitted by 9AM, Tuesday, September 25.

Terms: Aut
| Units: 4
| UG Reqs: GER:DB-Hum, WAY-ER

## ENGR 140B: Leadership of Technology Ventures

Open to Mayfield Fellows only; taken during the summer internship at a technology startup. Students exchange experiences and continue the formal learning process. Activities journal. Credit given following quarter.

Terms: Aut
| Units: 1-2

Instructors:
Byers, T. (PI)

## ENGR 140C: Leadership of Technology Ventures

Open to Mayfield Fellows only. Capstone to the 140 sequence. Students, faculty, employers, and venture capitalists share recent internship experiences and analytical frameworks. Students develop living case studies and integrative project reports.

Terms: Aut
| Units: 2-3

Instructors:
Byers, T. (PI)

## ENGR 145: Technology Entrepreneurship

How does the entrepreneurship process enable the creation and growth of high-impact enterprises? Why does entrepreneurial leadership matter even in a large organization or a non-profit venture? What are the differences between just an idea and true opportunity? How do entrepreneurs form teams and gather the resources necessary to create a successful startup? Mentor-guided projects focus on analyzing students' ideas, case studies allow for examining the nuances of innovation, research examines the entrepreneurial process, and expert guests allow for networking with Silicon Valley's world-class entrepreneurs and venture capitalists. For undergraduates of all majors with interest in startups the leverage breakthrough information, energy, medical and consumer technologies. No prerequisites. Limited enrollment.

Terms: Aut, Win, Sum
| Units: 4
| UG Reqs: GER:DB-SocSci, WAY-SI

Instructors:
Byers, T. (PI)
;
Eesley, C. (PI)
;
Hwang, R. (PI)
;
Mokrian, P. (PI)
;
Bremner, R. (TA)
;
Hassan, F. (TA)
;
Lesniewski, L. (TA)
;
Muppidi, S. (TA)
;
Soh, G. (TA)
;
Volmar, E. (TA)
;
Whittle, T. (TA)
;
Zhou, E. (TA)

## ENGR 154: Vector Calculus for Engineers (CME 100)

Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Introduction to linear algebra: matrix operations, systems of algebraic equations, methods of solution and applications. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Examples and applications drawn from various engineering fields. Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math21). Placement diagnostic (recommendation non binding) at:(
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext).

Terms: Aut, Spr
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Khayms, V. (PI)
;
Le, H. (PI)
;
Mishra, A. (PI)
;
Abbou, R. (TA)
;
Bougdal-Lambert, I. (TA)
;
Chen, E. (TA)
;
Chen, G. (TA)
;
Chiu, D. (TA)
;
Earley, E. (TA)
;
Fry, K. (TA)
;
Homma, Y. (TA)
;
Mantravadi, S. (TA)
;
Moore, L. (TA)
;
Romain, M. (TA)
;
Wang, A. (TA)
;
Warne, L. (TA)

## ENGR 155A: Ordinary Differential Equations for Engineers (CME 102)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications: Solution of initial and boundary value problems, series solutions, Laplace transforms, and nonlinear equations; numerical methods for solving ordinary differential equations, accuracy of numerical methods, linear stability theory, finite differences. Introduction to MATLAB programming as a basic tool kit for computations. Problems from various engineering fields.Prerequisites: knowledge of single-variable calculus equivalent to the content of
Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with
Math 21, 5 on Calc AB with
Math21). Placement diagnostic (recommendation non binding) at:(
https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext). Recommended:
CME100.

Terms: Aut, Win, Spr, Sum
| Units: 5
| UG Reqs: GER:DB-Math, WAY-FR

Instructors:
Cameron, M. (PI)
;
Le, H. (PI)
;
Aboumrad, G. (TA)
...
more instructors for ENGR 155A »

Instructors:
Cameron, M. (PI)
;
Le, H. (PI)
;
Aboumrad, G. (TA)
;
Bougdal-Lambert, I. (TA)
;
Chiu, D. (TA)
;
Goc, K. (TA)
;
Harris, S. (TA)
;
Planeix, P. (TA)
;
Romain, M. (TA)
;
Schleede, P. (TA)
;
Zhang, V. (TA)

## ENGR 199: Special Studies in Engineering

Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the section number corresponding to the particular faculty member. May be repeated for credit. Prerequisite: consent of instructor.

Terms: Aut, Win, Spr
| Units: 1-15
| Repeatable for credit

## ENGR 199W: Writing of Original Research for Engineers

Technical writing in science and engineering. Students produce a substantial document describing their research, methods, and results. Prerequisite: completion of freshman writing requirements; prior or concurrent in 2 units of research in the major department; and consent of instructor. WIM for BioMedical Computation.

Terms: Aut, Win, Spr, Sum
| Units: 3

Instructors:
Altman, R. (PI)
;
Butte, A. (PI)
;
Carter, D. (PI)
...
more instructors for ENGR 199W »

Instructors:
Altman, R. (PI)
;
Butte, A. (PI)
;
Carter, D. (PI)
;
Covert, M. (PI)
;
Davis, J. (PI)
;
Fuller, G. (PI)
;
Hildemann, L. (PI)
;
Huang, K. (PI)
;
Kelley, D. (PI)
;
Levenston, M. (PI)
;
Lozano, N. (PI)
;
McDevitt, M. (PI)
;
Moin, P. (PI)
;
Mungal, M. (PI)
;
Okamura, A. (PI)
;
Osgood, B. (PI)
;
Reichard, C. (PI)
;
Safavi-Naeini, A. (PI)
;
Sheppard, S. (PI)
;
Smith, J. (PI)
;
Swartz, J. (PI)