2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

1 - 5 of 5 results for: EE216

EE 216: Principles and Models of Semiconductor Devices

Carrier generation, transport, recombination, and storage in semiconductors. Physical principles of operation of the p-n junction, heterojunction, metal semiconductor contact, bipolar junction transistor, MOS capacitor, MOS and junction field-effect transistors, and related optoelectronic devices such as CCDs, solar cells, LEDs, and detectors. First-order device models that reflect physical principles and are useful for integrated-circuit analysis and design. Prerequisite: 116 or equivalent.
Terms: Aut, Win, Sum | Units: 3

EE 237: Solar Energy Conversion

Basics of solar energy conversion in photovoltaic devices. Solar cell device physics: electrical and optical. Crystalline silicon, thin film and multi-junction solar cells. Solar system issues including module assembly, inverters, and micro-inverters. Concentrated solar power. Flip classroom model is used supplementing classroom lectures with short videos. Guest speakers include distinguished engineers, entrepreneurs and venture capitalists actively engaged in solar industry. Recommended: EE116, EE216.
Last offered: Spring 2015

EE 292L: Nanomanufacturing

Fundamentals of nanomanufacturing technology and applications. Topics include recent developments in process technology, lithography and patterning. Technology for FinFET transistors, NAND flash and 3D chips. Manufacturing of LEDs, thin film and crystalline solar cells. Flip classroom model is used supplementing classroom lectures with short videos. Guest speakers include distinguished engineers, entrepreneurs and venture capitalists actively engaged in nanomanufacturing. Prerequisite: background in device physics and process technology. Recommended: EE116, EE216, EE212
Last offered: Spring 2016

EE 320: Nanoelectronics

This course covers the device physics and operation principles of nanoelectric devices, with a focus on devices for energy-efficient computation. Topics covered include devices based on new nanomaterials such as carbon nanotubes, semiconductor nanowires, and 2D layered materials such as graphene; non-FET based devices such as nanoelectromechanical (NEM) relay, single electron transistors (SET) and resonant tunneling diodes (RTD); as well as FET-based devices such as tunnel FET. Devices targeted for both logic and memory applications are covered. Prerequisites: Undergraduate device physics, EE222, EE216, EE316. Recommended courses: EE223, EE228, EE311.
Terms: Spr | Units: 3

EE 327: Properties of Semiconductor Materials

Modern semiconductor devices and integrated circuits are based on unique energy band, carrier transport, and optical properties of semiconductor materials. How to choose these properties for operation of semiconductor devices. Emphasis is on quantum mechanical foundations of the properties of solids, energy bandgap engineering, semi-classical transport theory, semi-conductor statistics, carrier scattering, electro-magneto transport effects, high field ballistic transport, Boltzmann transport equation, quantum mechanical transitions, optical absorption, and radiative and non-radiative recombination that are the foundations of modern transistors and optoelectronic devices. Prerequisites: EE216 or equivalent.
Terms: Spr | Units: 3
Instructors: Harris, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints