2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

51 - 60 of 69 results for: EE

EE 311: Advanced Integrated Circuits Technology

What are the practical and fundamental limits to the evolution of the technology of modern MOS devices and interconnects? How are modern devices and circuits fabricated and what future changes are likely? Advanced techniques and models of MOS devices and back-end (interconnect and contact) processing. What are future device structures and materials to maintain progress in integrated electronics? MOS front-end and back-end process integration. Prerequisites: EE 216 or equivalent. Recommended: EE 212.
Terms: Spr | Units: 3
Instructors: Saraswat, K. (PI)

EE 317: Special Topics on Wide Bandgap Materials and Devices

Wide-bandgap (WBG) semiconductors present a pathway to push the limits of efficiency in optoelectronics and electronics enabling significant energy savings, offering new and compact architecture, and more functionality. We will first study the examples set by GaN and SiC in lighting, radiofrequency and power applications, then use it to explore new materials like Ga2O3, AlN and diamond to understand their potential to drive the future semiconductor industry. The term papers will include a short project that may require simulation to conduct device design and analysis. Prerequisites: EE 216 or EE 218
Terms: Spr | Units: 3

EE 340: Optical Micro- and Nano-Cavities

Optical micro- and nano-cavities and their device applications. Types of optical cavities (microdisks, microspheres, photonic crystal cavities, plasmonic cavities), and their electromagnetic properties, design, and fabrication techniques. Cavity quantum electrodynamics: strong and weak-coupling regime, Purcell factor, spontaneous emission control. Applications of optical cavities, including low-threshold lasers, optical modulators, quantum information processing devices, and bio-chemical sensors. Prerequisites: Advanced undergraduate or basic graduate level knowledge of electromagnetics, quantum.
Terms: Spr | Units: 3
Instructors: Vuckovic, J. (PI)

EE 348: Advanced Optical Fiber Communications

Optical amplifiers: gain, saturation, noise. Semiconductor amplifiers. Erbium-doped fiber amplifiers. System applications: preamplified receiver performance, amplifier chains. Raman amplifiers, lumped vs. distributed amplification. Group-velocity dispersion management: dispersion-compensating fibers, filters, gratings. Interaction of dispersion and nonlinearity, dispersion maps. Multichannel systems. Wavelength-division multiplexing components: filters, multiplexers. WDM systems, crosstalk. Time, subcarrier, code and polarization-division multiplexing. Comparison of modulation techniques: differential phase-shift keying, phase-shift keying, quadrature-amplitude modulation. Comparison of detection techniques: noncoherent, differentially coherent, coherent. Prerequisite: 247.
Terms: Spr | Units: 3
Instructors: Kahn, J. (PI)

EE 364A: Convex Optimization I (CME 364A, CS 334A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Win, Sum | Units: 3

EE 364B: Convex Optimization II (CME 364B)

Continuation of 364A. Subgradient, cutting-plane, and ellipsoid methods. Decentralized convex optimization via primal and dual decomposition. Monotone operators and proximal methods; alternating direction method of multipliers. Exploiting problem structure in implementation. Convex relaxations of hard problems. Global optimization via branch and bound. Robust and stochastic optimization. Applications in areas such as control, circuit design, signal processing, and communications. Course requirements include project. Prerequisite: 364A.
Terms: Spr | Units: 3
Instructors: Pilanci, M. (PI)

EE 371: Advanced VLSI Circuit Design

Design of high-performance digital systems, the things that cause them to fail, and how to avoid these problems. Topics will focus on current issues including: wiring resistance and how to deal with it, power and Gnd noise and regulation, clock (or asynchronous) system design and how to minimize clocking overhead, high-speed I/O design, energy minimization including leakage control, and structuring your Verilog code to result in high-performance, low energy systems. Extensive use of modern CAD tools. Prerequisites: EE 213 and EE 271, or consent of instructor.
Terms: Spr | Units: 3
Instructors: Raina, P. (PI)

EE 373A: Adaptive Signal Processing

Learning algorithms for adaptive digital filters. Self-optimization. Wiener filter theory. Quadratic performance functions, their eigenvectors and eigenvalues. Speed of convergence. Asymptotic performance versus convergence rate. Applications of adaptive filters to statistical prediction, process modeling, adaptive noise canceling, adaptive antenna arrays, adaptive inverse control, and equalization and echo canceling in modems. Artificial neural networks. Cognitive memory/human and machine. Natural and artificial synapses. Hebbian learning. The Hebbian-LMS algorithm. Theoretical and experimental research projects in adaptive filter theory, communications, audio systems, and neural networks. Biomedical research projects, supervised jointly by EE and Medical School faculty. Recommended: EE263, EE264, EE278.
Terms: Spr | Units: 3
Instructors: Widrow, B. (PI)

EE 380: Colloquium on Computer Systems

Live presentations of current research in the design, implementation, analysis, and applications of computer systems. Topics range over a wide range and are different every quarter. Topics may include fundamental science, mathematics, cryptography, device physics, integrated circuits, computer architecture, programming, programming languages, optimization, applications, simulation, graphics, social implications, venture capital, patent and copyright law, networks, computer security, and other topics of related to computer systems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

EE 382A: Parallel Processors Beyond Multicore Processing

Formerly EE392Q. The current parallel computing research emphasizes multi-cores, but there are alterna-tive array processors with significant potential. This hands-on course focuses on SIMD (Single-Instruction, Multiple-Data) massively parallel processors. Topics: Flynn's Taxonomy, parallel architectures, Kestrel architecture and simulator, principles of SIMD programming, parallel sorting with sorting networks, string comparison with dynamic programming (edit distance, Smith-Waterman), arbitrary-precision operations with fixed-point numbers, reductions, vector and matrix multiplication, image processing algo-rithms, asynchronous algorithms on SIMD ("SIMD Phase Programming Model"), Man-delbrot set, analysis of parallel performance.
Terms: Spr | Units: 3
Instructors: Di Blas, A. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints