2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

41 - 50 of 61 results for: EE

EE 300: Master's Thesis and Thesis Research

Independent work under the direction of a department faculty. Written thesis required for final letter grade. The continuing grade 'N' is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

EE 310: SystemX: Ubiquitous Sensing, Computing and Communication Seminar

This is a seminar course with invited speakers. Sponsored by Stanford's SystemX Alliance, the talks will cover emerging topics in contemporary hardware/software systems design. Special focus will be given to the key building blocks of sensors, processing elements and wired/wireless communications, as well as their foundations in semiconductor technology, SoC construction, and physical assembly as informed by the SystemX Focus Areas. The seminar will draw upon distinguished engineering speakers from both industry and academia who are involved at all levels of the technology stack and the applications that are now becoming possible. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

EE 311: Advanced Integrated Circuits Technology

What are the practical and fundamental limits to the evolution of the technology of modern MOS devices and interconnects? How are modern devices and circuits fabricated and what future changes are likely? Advanced techniques and models of MOS devices and back-end (interconnect and contact) processing. What are future device structures and materials to maintain progress in integrated electronics? MOS front-end and back-end process integration. Prerequisites: EE 216 or equivalent. Recommended: EE 212.
Terms: Spr | Units: 3
Instructors: Saraswat, K. (PI)

EE 317: Special Topics on Wide Bandgap Materials and Devices

Wide-bandgap (WBG) semiconductors present a pathway to push the limits of efficiency in optoelectronics and electronics enabling significant energy savings, offering new and compact architecture, and more functionality. We will first study the examples set by GaN and SiC in lighting, radiofrequency and power applications, then use it to explore new materials like Ga2O3, AlN and diamond to understand their potential to drive the future semiconductor industry. The term papers will include a short project that may require simulation to conduct device design and analysis. Prerequisites: EE 216 or EE 218
Terms: Spr | Units: 3

EE 340: Optical Micro- and Nano-Cavities

Optical micro- and nano-cavities and their device applications. Types of optical cavities (microdisks, microspheres, photonic crystal cavities, plasmonic cavities), and their electromagnetic properties, design, and fabrication techniques. Cavity quantum electrodynamics: strong and weak-coupling regime, Purcell factor, spontaneous emission control. Applications of optical cavities, including low-threshold lasers, optical modulators, quantum information processing devices, and bio-chemical sensors. Prerequisites: Advanced undergraduate or basic graduate level knowledge of electromagnetics, quantum.
Terms: Spr | Units: 3
Instructors: Vuckovic, J. (PI)

EE 348: Advanced Optical Fiber Communications

Optical amplifiers: gain, saturation, noise. Semiconductor amplifiers. Erbium-doped fiber amplifiers. System applications: preamplified receiver performance, amplifier chains. Raman amplifiers, lumped vs. distributed amplification. Group-velocity dispersion management: dispersion-compensating fibers, filters, gratings. Interaction of dispersion and nonlinearity, dispersion maps. Multichannel systems. Wavelength-division multiplexing components: filters, multiplexers. WDM systems, crosstalk. Time, subcarrier, code and polarization-division multiplexing. Comparison of modulation techniques: differential phase-shift keying, phase-shift keying, quadrature-amplitude modulation. Comparison of detection techniques: noncoherent, differentially coherent, coherent. Prerequisite: 247.
Terms: Spr | Units: 3
Instructors: Kahn, J. (PI)

EE 364B: Convex Optimization II (CME 364B)

Continuation of 364A. Subgradient, cutting-plane, and ellipsoid methods. Decentralized convex optimization via primal and dual decomposition. Monotone operators and proximal methods; alternating direction method of multipliers. Exploiting problem structure in implementation. Convex relaxations of hard problems. Global optimization via branch and bound. Robust and stochastic optimization. Applications in areas such as control, circuit design, signal processing, and communications. Course requirements include project. Prerequisite: 364A.
Terms: Spr | Units: 3
Instructors: Pilanci, M. (PI)

EE 371: Advanced VLSI Circuit Design

Design of high-performance digital systems, the things that cause them to fail, and how to avoid these problems. Topics will focus on current issues including: wiring resistance and how to deal with it, power and Gnd noise and regulation, clock (or asynchronous) system design and how to minimize clocking overhead, high-speed I/O design, energy minimization including leakage control, and structuring your Verilog code to result in high-performance, low energy systems. Extensive use of modern CAD tools. Prerequisites: EE 213 and EE 271, or consent of instructor.
Terms: Spr | Units: 3
Instructors: Raina, P. (PI)

EE 373A: Adaptive Signal Processing

Learning algorithms for adaptive digital filters. Self-optimization. Wiener filter theory. Quadratic performance functions, their eigenvectors and eigenvalues. Speed of convergence. Asymptotic performance versus convergence rate. Applications of adaptive filters to statistical prediction, process modeling, adaptive noise canceling, adaptive antenna arrays, adaptive inverse control, and equalization and echo canceling in modems. Artificial neural networks. Cognitive memory/human and machine. Natural and artificial synapses. Hebbian learning. The Hebbian-LMS algorithm. Theoretical and experimental research projects in adaptive filter theory, communications, audio systems, and neural networks. Biomedical research projects, supervised jointly by EE and Medical School faculty. Recommended: EE263, EE264, EE278.
Terms: Spr | Units: 3
Instructors: Widrow, B. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints