2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

71 - 80 of 173 results for: EARTHSYS

EARTHSYS 140: Data science for geoscience (EARTHSYS 240, ENERGY 240, ESS 239, GEOLSCI 140, GEOLSCI 240)

Overview of some of the most important data science methods (statistics, machine learning & computer vision) relevant for geological sciences, as well as other fields in the Earth Sciences. Areas covered are: extreme value statistics for predicting rare events; compositional data analysis for geochemistry; multivariate analysis for designing data & computer experiments; probabilistic aggregation of evidence for spatial mapping; functional data analysis for multivariate environmental datasets, spatial regression and modeling spatial uncertainty with covariate information (geostatistics). Identification & learning of geo-objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems.
Terms: Win | Units: 3

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, ESS 141, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR
Instructors: Lyons, E. (PI)

EARTHSYS 143: Molecular Geomicrobiology Laboratory (BIO 142, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Welander, P. (PI)

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (ESS 164)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. All students are required to attend a weekly lab session.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, ESS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Aut | Units: 3

EARTHSYS 146B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (CEE 162I, CEE 262I, ESS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: MATH 51 or CME100; and PHYSICS 41; and a course that introduces the equations of fluid motion (e.g. ESS 246A, ESS 148, or CEE 101B).
Terms: Win | Units: 3

EARTHSYS 147: Ecosystem Ecology and Biogeochemistry (BIO 147, BIO 240, EARTHSYS 247)

An introduction to ecosystem ecology and terrestrial biogeochemistry. This course will focus on the dynamics of carbon and other biologically essential elements in the Earth System, on spatial scales from local to global. Prerequisites: Biology 117, Earth Systems 111, or graduate standing.
Terms: Aut | Units: 3
Instructors: Vitousek, P. (PI)

EARTHSYS 148: Grow it, Cook it, Eat it. An Experiential Exploration of How and Why We Eat What We Eat

This course provides an introductory exploration of the social, cultural, and economic forces that influence contemporary human diets. Through the combination of interrelated lectures by expert practitioners and hands-on experience planting, tending, harvesting, cooking, and eating food from Stanford's dining hall gardens, students will learn to think critically about modern agricultural practices and the relationship between cuisine and human and ecological health outcomes. Students will also learn and apply basic practices of human-centered design to develop simple frameworks for understanding various eating behaviors in Stanford¿s dining halls and to develop and test hypotheses for how R&DE Stanford Dining might influence eating behaviors to effect better health outcomes for people and the planet. This class, which is offered through the FEED Collaborative in the School of Earth, Energy and Environmental Sciences, requires an application. For more information about the FEED Collaborative, application procedures and deadlines, and other classes we teach, please visit our website at http://feedcollaborative.org.
Last offered: Autumn 2018

EARTHSYS 149: Wild Writing (EARTHSYS 249)

What is wilderness and why does it matter? In this course we will interrogate answers to this question articulated by influential and diverse American environmental thinkers of the 19th, 20th, and 21st centuries, who through their writing transformed public perceptions of wilderness and inspired such actions as the founding of the National Park System, the passage of the Wilderness Act and the Clean Air and Water Acts, the establishment of the Environmental Protection Agency, and the birth of the environmental and climate justice movements. Students will also develop their own responses to the question of what is wilderness and why it matters through a series of writing exercises that integrate personal narrative, wilderness experience, and environmental scholarship, culminating in a ~3000 word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.nnIf you are interested in signing up for the course, complete this pre-registration form https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3 | UG Reqs: WAY-CE
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints