2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

71 - 80 of 168 results for: EARTHSYS

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (ESS 164)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. All students are required to attend a weekly lab session.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, ESS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Aut | Units: 3

EARTHSYS 146B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (CEE 162I, CEE 262I, ESS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: MATH 51 or CME100; and PHYSICS 41; and a course that introduces the equations of fluid motion (e.g. ESS 246A, ESS 148, or CEE 101B).
Terms: Win | Units: 3

EARTHSYS 147: Ecosystem Ecology and Biogeochemistry (BIO 147, BIO 240, EARTHSYS 247)

An introduction to ecosystem ecology and terrestrial biogeochemistry. This course will focus on the dynamics of carbon and other biologically essential elements in the Earth System, on spatial scales from local to global. Prerequisites: Biology 117, Earth Systems 111, or graduate standing.
Terms: Aut | Units: 3
Instructors: Vitousek, P. (PI)

EARTHSYS 148: Grow it, Cook it, Eat it. An Experiential Exploration of How and Why We Eat What We Eat

This course provides an introductory exploration of the social, cultural, and economic forces that influence contemporary human diets. Through the combination of interrelated lectures by expert practitioners and hands-on experience planting, tending, harvesting, cooking, and eating food from Stanford's dining hall gardens, students will learn to think critically about modern agricultural practices and the relationship between cuisine and human and ecological health outcomes. Students will also learn and apply basic practices of human-centered design to develop simple frameworks for understanding various eating behaviors in Stanford¿s dining halls and to develop and test hypotheses for how R&DE Stanford Dining might influence eating behaviors to effect better health outcomes for people and the planet. This class, which is offered through the FEED Collaborative in the School of Earth, Energy and Environmental Sciences, requires an application. For more information about the FEED Collaborative, application procedures and deadlines, and other classes we teach, please visit our website at http://feedcollaborative.org.
Last offered: Autumn 2018

EARTHSYS 149: Wild Writing (EARTHSYS 249)

What is wilderness and why does it matter? In this course we will interrogate answers to this question articulated by influential and diverse American environmental thinkers of the 19th, 20th, and 21st centuries, who through their writing transformed public perceptions of wilderness and inspired such actions as the founding of the National Park System, the passage of the Wilderness Act and the Clean Air and Water Acts, the establishment of the Environmental Protection Agency, and the birth of the environmental and climate justice movements. Students will also develop their own responses to the question of what is wilderness and why it matters through a series of writing exercises that integrate personal narrative, wilderness experience, and environmental scholarship, culminating in a ~3000 word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.nnIf you are interested in signing up for the course, complete this pre-registration form https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3 | UG Reqs: WAY-CE

EARTHSYS 150B: Fire: Social and Ecological Contexts of Conflagration (ANTHRO 150B)

Over 1 million acres burned from California wildland fires in 2018, yet conservative estimates suggest that four times as many acres burned annually in California preceding European colonialism. In this course we will explore how climate, land management, urban development, and human social institutions contribute to contrasts in wild and prescribed (intentional anthropogenic) fire patterns worldwide. We will investigate the socio-ecological values and harms associated with different fire and land-use policies and practices, ranging from Indigenous and small-scale contexts, conservation projects, and large-scale fire suppression efforts.
Terms: Aut | Units: 3

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and ESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, ESS 152, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA

EARTHSYS 154: Intermediate Writing: Communicating Climate Change: Navigating the Stories from the Frontlines (PWR 91EP)

In the next two decades floods, droughts and famine caused by climate change will displace more than 250 million people around the world. In this course students will develop an increased understanding of how different stakeholders including scientists, aid organizations, locals, policy makers, activists, and media professionals communicate the climate change crisis. They will select a site experiencing the devastating effects and research the voices telling the stories of those sites and the audiences who are (or are not) listening. Students might want to investigate drought-ridden areas such as the Central Valley of California or Darfur, Sudan; Alpine glaciers melting in the Alps or in Alaska; the increasingly flooded Pacific islands; the hurricane ravaged Gulf Coast, among many others. Data from various stakeholders will be analyzed and synthesized for a magazine length article designed to bring attention to a region and/or issue that has previously been neglected. Students will wri more »
In the next two decades floods, droughts and famine caused by climate change will displace more than 250 million people around the world. In this course students will develop an increased understanding of how different stakeholders including scientists, aid organizations, locals, policy makers, activists, and media professionals communicate the climate change crisis. They will select a site experiencing the devastating effects and research the voices telling the stories of those sites and the audiences who are (or are not) listening. Students might want to investigate drought-ridden areas such as the Central Valley of California or Darfur, Sudan; Alpine glaciers melting in the Alps or in Alaska; the increasingly flooded Pacific islands; the hurricane ravaged Gulf Coast, among many others. Data from various stakeholders will be analyzed and synthesized for a magazine length article designed to bring attention to a region and/or issue that has previously been neglected. Students will write and submit their article for publication.nnFor students who have completed the first two levels of the writing requirement and want further work in developing writing abilities, especially within discipline-specific contexts and nonfiction genres. Individual conferences with instructor and peer workshops. Prerequisite: first two levels of the writing requirement or equivalent transfer credit. For more information, see https://undergrad.stanford.edu/programs/pwr/explore/notation-science-writing.
Last offered: Spring 2016 | UG Reqs: WAY-CE, WAY-SI
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints