2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

11 - 20 of 168 results for: EARTHSYS

EARTHSYS 22: Introduction to Landscape Architecture: Urban Ecology and Environmental Design

This 4-week long course is an introduction to landscape architecture, covering a brief history of the field, making connections between science and sustainable and resilient urban ecosystems, and exploring a range of projects and topics that landscape architects touch. From public spaces to streetscapes to shorelines and trails, landscape architecture projects combine art and science in the pursuit of connecting and engaging humans with the built and natural environments. The practice can be used to achieve and engage in complex goals such as climate resilience, environmental restoration, habitat creation, green infrastructure planning, and aesthetic appeal. Through targeted readings, lectures, thoughtful discussions, and foundational assignments encouraging students to get outside and observe their surrounding landscape and campus, students will receive an introduction to landscape architecture and engage with a creative application of earth systems science.
Terms: Spr | Units: 1

EARTHSYS 36N: Life at the Extremes: From the Deep Sea to Deep Space

Preference to freshmen. Microbial life is diverse and resilient on Earth; could it survive elsewhere in our solar system? This seminar will investigate the diversity of microbial life on earth, with an emphasis on extremophiles, and consider the potential for microbial life to exist and persist in extraterrestrial locales. Topics include microbial phylogenetic and physiological diversity, biochemical adaptations of extremophiles, ecology of extreme habitats, and apparent requirements and limits of life. Format includes lectures, discussions, lab-based activities and local field trips. Basics of microbiology, biochemistry, and astrobiology.
Terms: Win | Units: 3
Instructors: Dekas, A. (PI)

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (ESS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

EARTHSYS 39Q: Talking about Earthquakes, Volcanoes, and Floods: Science Communication and Natural Hazards

In an age of fake news, how do we communicate the importance of scientific facts? How do we compel action from an individual to a national level when the facts alone aren¿t enough? In this class you will learn the basic tools of science communication through the lens of natural hazards such as earthquakes, volcanoes, and extreme weather. You will learn the basics of the science that drives these hazards, and how to communicate that science to different audiences. Recent research has shown that relaying scientific knowledge alone to potentially vulnerable populations does not have a significant impact on increasing their resilience to those hazards. Therefore, it is increasingly important to train a new generation of science communicators and translators who can effectively relay complex information in engaging and understandable ways. This will be a hands-on course where you will be working individually and in small groups to discuss class topics, share, and peer review each other¿s writing each week. This course satisfies the Write 2 requirement for undergraduates.
Terms: Spr | Units: 4 | UG Reqs: Writing 2
Instructors: Phillips, K. (PI)

EARTHSYS 41N: The Global Warming Paradox

Preference to freshman. Focus is on the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Topics include: Earth¿s energy balance; detection and attribution of climate change; the climate response to enhanced greenhouse forcing; impacts of climate change on natural and human systems; and proposed methods for curbing further climate change. Sources include peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 44N: The Invisible Majority: The Microbial World That Sustains Our Planet

Microbes are often viewed through the lens of infectious disease yet they play a much broader and underappreciated role in sustaining our Earth system. From introducing oxygen into the Earth¿s atmosphere over 2 billion years ago to consuming greenhouse gases today, microbial communities have had (and continue to have) a significant impact on our planet. In this seminar, students will learn how microbes transformed the ancient Earth environment into our modern planet, how they currently sustain our Earth¿s ecosystems, and how scientists study them both in the present and in the past. Students will be exposed to the fundamentals of microbiology, biogeochemistry, and Earth history.
Last offered: Spring 2017

EARTHSYS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (ESS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's Changes in a California Estuary: A Profile of Elkhorn Slough. Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 46Q: Environmental Impact of Energy Systems: What are the Risks? (GEOLSCI 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Last offered: Winter 2016 | UG Reqs: WAY-AQR

EARTHSYS 55Q: Am I a Part of Earth? Understanding of Rock, Water, and Time

Am I a part of Earth? Not only is this a question of personal meaning, but a complex one that shapes how we interact with the natural world. Answering it calls for both scientific and experiential understanding of Earth processes, as well as how geologic thinking and our individual thinking about nature have changed through time. By connecting Earth processes and rates of transformations to personal experience, we can rigorously interrogate our relationship to and/or separation from Earth. In this course, you will think like a philosopher and a geochemist. You will commune with nature and calculate the history of rocks. You will use real data analysis of Earth processes to understand the limits of our knowledge about Earth history (Deep Time). You will explore your interactions with Earth materials through mindfulness activities and discuss different views of humans relative to nature through history. You will have autonomy in a final project that synthesizes your growing understanding of your relationship to and/or separation from Earth. This course welcomes all, from rock collectors to hikers and ecofeminists to meditators. No prior experience with philosophy or Earth science is required, though an introductory high school chemistry and algebra course will be helpful.

EARTHSYS 58Q: Understanding Our Oceans: Scientific Toys, Tools, & Trips

In popular science magazines we read about deep ocean critters recently discovered or the latest threats coral reefs face. But what is it actually like to do science in the ocean-to research ocean life in the various ocean ecosystems? In this course, we will explore the latest advances in marine science-what technologies are allowing scientists to explore and investigate the ocean and what are we discovering. We will have 2 one-day fieldtrips (on Fridays) to marine research centers in Moss Landing, Monterey, and institutions in the Bay Area. This course will also expose students to what life as a marine biology/science graduate student is like.
Last offered: Spring 2019
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints