2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 97 results for: EARTHSYS ; Currently searching offered courses. You can also include unoffered courses

EARTHSYS 4: Coevolution of Earth and Life (GEOLSCI 4)

Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? Are we living in a sixth mass extinction? In this course, we will develop and use the tools of geology, paleontology, geochemistry, and modeling that allow us to reconstruct Earth's 4.5 billion year history and to reconstruct the interactions between life and its host planet over the past 4 billion years. We will also ask what this long history can tell us about life's likely future on Earth. We will also use One half-day field trip.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 8: The Oceans: An Introduction to the Marine Environment (ESS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA

EARTHSYS 9: Public Service Internship Preparation (EDUC 9, HUMBIO 9, PUBLPOL 74, URBANST 101)

Are you prepared for your internship this summer? This workshop series will help you make the most of your internship experience by setting learning goals in advance; negotiating and communicating clear roles and expectations; preparing for a professional role in a non-profit, government, or community setting; and reflecting with successful interns and community partners on how to prepare sufficiently ahead of time. You will read, discuss, and hear from guest speakers, as well as develop a learning plan specific to your summer or academic year internship placement. This course is primarily designed for students who have already identified an internship for summer or a later quarter. You are welcome to attend any and all workshops, but must attend the entire series and do the assignments for 1 unit of credit.
Terms: Spr | Units: 1

EARTHSYS 10: Introduction to Earth Systems

For non-majors and prospective Earth Systems majors. Multidisciplinary approach using the principles of geology, biology, engineering, and economics to describe how the Earth operates as an interconnected, integrated system. Goal is to understand global change on all time scales. Focus is on sciences, technological principles, and sociopolitical approaches applied to solid earth, oceans, water, energy, and food and population. Case studies: environmental degradation, loss of biodiversity, and resource sustainability.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 11: Introduction to Geology (GEOLSCI 1)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 22: Introduction to Landscape Architecture: Urban Ecology and Environmental Design

This 4-week long course is an introduction to landscape architecture, covering a brief history of the field, making connections between science and sustainable and resilient urban ecosystems, and exploring a range of projects and topics that landscape architects touch. From public spaces to streetscapes to shorelines and trails, landscape architecture projects combine art and science in the pursuit of connecting and engaging humans with the built and natural environments. The practice can be used to achieve and engage in complex goals such as climate resilience, environmental restoration, habitat creation, green infrastructure planning, and aesthetic appeal. Through targeted readings, lectures, thoughtful discussions, and foundational assignments encouraging students to get outside and observe their surrounding landscape and campus, students will receive an introduction to landscape architecture and engage with a creative application of earth systems science.
Terms: Spr | Units: 1

EARTHSYS 36N: Life at the Extremes: From the Deep Sea to Deep Space

Preference to freshmen. Microbial life is diverse and resilient on Earth; could it survive elsewhere in our solar system? This seminar will investigate the diversity of microbial life on earth, with an emphasis on extremophiles, and consider the potential for microbial life to exist and persist in extraterrestrial locales. Topics include microbial phylogenetic and physiological diversity, biochemical adaptations of extremophiles, ecology of extreme habitats, and apparent requirements and limits of life. Format includes lectures, discussions, lab-based activities and local field trips. Basics of microbiology, biochemistry, and astrobiology.
Terms: Win | Units: 3

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (ESS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

EARTHSYS 39Q: Talking about Earthquakes, Volcanoes, and Floods: Science Communication and Natural Hazards

In an age of fake news, how do we communicate the importance of scientific facts? How do we compel action from an individual to a national level when the facts alone aren¿t enough? In this class you will learn the basic tools of science communication through the lens of natural hazards such as earthquakes, volcanoes, and extreme weather. You will learn the basics of the science that drives these hazards, and how to communicate that science to different audiences. Recent research has shown that relaying scientific knowledge alone to potentially vulnerable populations does not have a significant impact on increasing their resilience to those hazards. Therefore, it is increasingly important to train a new generation of science communicators and translators who can effectively relay complex information in engaging and understandable ways. This will be a hands-on course where you will be working individually and in small groups to discuss class topics, share, and peer review each other¿s writing each week. This course satisfies the Write 2 requirement for undergraduates.
Terms: Spr | Units: 4 | UG Reqs: Writing 2
Instructors: Phillips, K. (PI)

EARTHSYS 41N: The Global Warming Paradox

Preference to freshman. Focus is on the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Topics include: Earth¿s energy balance; detection and attribution of climate change; the climate response to enhanced greenhouse forcing; impacts of climate change on natural and human systems; and proposed methods for curbing further climate change. Sources include peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints