2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

21 - 30 of 154 results for: EARTHSYS

EARTHSYS 100: Environmental and Geological Field Studies in the Rocky Mountains (ESS 101)

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Terms: Aut | Units: 3

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 102: Fundamentals of Renewable Power (ENERGY 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended: Math 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EARTHSYS 103: Understanding Energy (CEE 107A, CEE 207A)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Field trip offerings differ each fall (see syllabus for updated list), but may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser¿s geothermal power plants, etc. Students choose two field trips from approximately 8 that are offered. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Open to all: pre-majors and majors, with any background! The course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nFor a course that covers all of this but goes less in-depth into the technical aspects of each energy resource, check out CEE 107S/207S Understanding Energy: Essentials, offered spring and summer (cannot take both for credit). Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S/207S or CEE 107E.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

EARTHSYS 104: The Water Course (GEOPHYS 70)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Last offered: Winter 2018 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 105: Food and Community: Food Security, Resilience and Equity (EARTHSYS 205)

What can communities do to bolster food security, resiliency, and equity in the face of climate change? This course aims to respond to this question, in three parts. In Part 1, we will explore the most current scientific findings on trends in anthropogenic climate forcing and the anticipated impacts on global and regional food systems. Specifically, Part I will review the anticipated impact of climate change on severe weather events, crop losses, and food price volatility and the influence of these impacts on global and regional food insecurity and hunger. In Part II, we will consider what communities can do to promote food security and equity in the face of these changes, by reviewing the emerging literature on food system resiliency. Finally, we will facilitate a conference in which multi-disciplinary teams from around the country will gather to initiate regional planning projects designed to enhance food system resilience and equity. Cardinal Course (certified by Haas Center). Limited enrollment. May be repeated for credit.
Last offered: Spring 2018 | Repeatable 2 times (up to 6 units total)

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

Formerly 96A - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Win | Units: 4

EARTHSYS 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105B)

Formerly 96B - Jasper Ridge Docent Training. Second of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve. These topics are presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course. NOTE: All classes take place at Jasper Ridge.
Terms: Spr | Units: 4

EARTHSYS 106: World Food Economy (EARTHSYS 206, ECON 106, ECON 206, ESS 106, ESS 206)

The economics of food production, consumption, and trade. The micro- and macro- determinants of food supply and demand, including the interrelationship among food, income, population, and public-sector decision making. Emphasis on the role of agriculture in poverty alleviation, economic development, and environmental outcomes. Grades based on mid-term exam and group modeling project and presentation. Enrollment is by application only and will be capped at 25, with priority given to upper level undergraduates in Economics and Earth Systems and graduate students (graduate students enroll in 206). Applications for enrollment are due by December 7, 2018. The application can be found here: https://economics.stanford.edu/academics/undergraduate-program/forms
Terms: Win | Units: 4 | UG Reqs: WAY-SI

EARTHSYS 106C: Why are Scientists Engineering Our Food?

This lecture and discussion course will review the scientific evidence on the use and impacts of genetic engineering in global food and agricultural systems. The class will cover the history and details of crop genetic improvement, ranging from primitive domestication to CRISPR technologies. We will examine the risks and benefits of crop genetic technologies in agriculture with regards to productivity, farm incomes, food safety, human health and nutrition, and environmental impacts. We will also discuss the current and future use of genetic engineering techniques for enhancing climate resilience and nutritional outcomes in agricultural systems worldwide. Finally, we will discuss the ethics of using modern genetic approaches for crop improvement, and the policy environment surrounding the use of these genetic techniques.nnOur expectation is that students enrolled in the course will attend all class sections and participate actively in the discussions. Students will be asked to identify peer-reviewed, scientific papers on the impacts of specific crop genetic improvements. Depending on the class size, students will also be asked to help lead class discussions. At the end of the course, students will work in groups to debate a selected topic on the use of genetic engineering in agriculture, to be announced during the course.nnPrerequisites: One course in biology and one course in economics are suggested. Completion of "Feeding Nine Billion" and "The World Food Economy" classes would also be helpful, as would a class in genetics, but there are no strict course requirements.
Last offered: Spring 2018
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints