2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

11 - 20 of 38 results for: EARTHSYS

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 114: Global Change and Emerging Infectious Disease (EARTHSYS 214, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 4-5 | UG Reqs: GER:DB-SocSci | Grading: Letter or Credit/No Credit

EARTHSYS 131: Pathways in Sustainability Careers (EARTH 131)

Interactive, seminar-style sessions expose students to diverse career pathways in sustainability. Professionals from a variety of careers discuss their work, their career development and decision-points in their career pathways, as well as life style aspects of their choices.
Terms: Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

EARTHSYS 143: Molecular Geomicrobiology Laboratory (BIO 142, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Welander, P. (PI)

EARTHSYS 149: Wild Writing (EARTHSYS 249)

What is wilderness and why does it matter? In this course we will interrogate answers to this question articulated by influential and diverse American environmental thinkers of the 19th, 20th, and 21st centuries, who through their writing transformed public perceptions of wilderness and inspired such actions as the founding of the National Park System, the passage of the Wilderness Act and the Clean Air and Water Acts, the establishment of the Environmental Protection Agency, and the birth of the environmental and climate justice movements. Students will also develop their own responses to the question of what is wilderness and why it matters through a series of writing exercises that integrate personal narrative, wilderness experience, and environmental scholarship, culminating in a ~3000 word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.nnIf you are interested in signing up for the course, complete this pre-registration form https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and ESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, ESS 152, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 155: Science of Soils (ESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Fendorf, S. (PI)

EARTHSYS 180: Principles and Practices of Sustainable Agriculture (ESS 280)

Field-based training in ecologically sound agricultural practices at the Stanford Community Farm. Weekly lessons, field work, and group projects. Field trips to educational farms in the area. Topics include: soils, composting, irrigation techniques, IPM, basic plant anatomy and physiology, weeds, greenhouse management, and marketing. Application required. Deadline: September 12 for Autumn and March 10 for Spring. nnApplication: https://stanforduniversity.qualtrics.com/jfe/form/SV_0ANZWrjlz0SbhxX
Terms: Aut, Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Repeatable for credit | Grading: Letter or Credit/No Credit

EARTHSYS 182A: Ecological Farm Systems

A project-based course emphasizing 'ways of doing' in sustainable agricultural systems based at the Stanford Educational Farm. Students will work individually and in small groups on projects at the Stanford Educational Farm. This course will include orchard establishment and educational garden design in addition to other topics.
Terms: Win, Spr | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Archie, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints