2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

311 - 320 of 397 results for: CSI::certificate

MS&E 263: Healthcare Operations Management

With healthcare spending in the US exceeding 17% of GDP and growing, improvements in the quality and efficiency of healthcare services are urgently needed. This class focuses on the use of analytical tools to support efficient and effective delivery of health care. Topics include quality control and management, capacity planning, resource allocation, management of patient flows, and scheduling. Prerequisites: basic knowledge of Excel spreadsheets, probability, and optimization.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 292: Health Policy Modeling

Primarily for master's students; also open to undergraduates and doctoral students. The application of mathematical, statistical, economic, and systems models to problems in health policy. Areas include: disease screening, prevention, and treatment; assessment of new technologies; bioterrorism response; and drug control policies.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 293: Technology and National Security (GEOLSCI 167, GEOLSCI 267, MS&E 193)

Explores the relation between technology, war, and national security policy from early history to modern day, focusing on current U.S. national security challenges and the role that technology plays in shaping our understanding and response to these challenges. Topics include the interplay between technology and modes of warfare; dominant and emerging technologies such as nuclear weapons, cyber, sensors, stealth, and biological; security challenges to the U.S.; and the U.S. response and adaptation to new technologies of military significance.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 297: "Hacking for Defense": Solving National Security issues with the Lean Launchpad

In a crisis, national security initiatives move at the speed of a startup yet in peacetime they default to decades-long acquisition and procurement cycles. Startups operate with continual speed and urgency 24/7. Over the last few years they've learned how to be not only fast, but extremely efficient with resources and time using lean startup methodologies. In this class student teams will take actual national security problems and learn how to apply lean startup principles, ("business model canvas," "customer development," and "agile engineering) to discover and validate customer needs and to continually build iterative prototypes to test whether they understood the problem and solution. Teams take a hands-on approach requiring close engagement with actual military, Department of Defense and other government agency end-users. Team applications required in February, see hacking4defense.stanford.edu. Limited enrollment.
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

MS&E 494: The Energy Seminar (CEE 301, ENERGY 301)

Interdisciplinary exploration of current energy challenges and opportunities, with talks by faculty, visitors, and students. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Weyant, J. (PI)

NATIVEAM 115: Introduction to Native American History

This course incorporates a Native American perspective in the assigned readings and is an introduction to Native American History from contact with Europeans to the present. History, from a Western perspective, is secular and objectively evaluative whereas for most Indigenous peoples, history is a moral endeavor (Walker, Lakota Society 113). A focus in the course is the civil rights era in American history when Native American protest movements were active. Colonization and decolonization, as they historically occurred are an emphasis throughout the course using texts written from the perspective of the colonized at the end of the 20th century in addition to the main text. Students will be encouraged to critically explore issues of interest through two short papers and one longer paper that is summarized in a 15-20 minute presentation on a topic of interest relating to the course.
Terms: Win | Units: 5 | UG Reqs: GER:EC-AmerCul, WAY-ED | Grading: Letter or Credit/No Credit

OBGYN 216: Current Issues in Reproductive Health

Reproductive Health is a broad subject encompassing many concepts and practices. Issues and services within the context of reproductive health include such diverse topics as fertility, pregnancy, contraception, abortion, sexuality, menopause and parenting. Course focuses on topics related to abortion services, fertility and contraception; current research and practices in family planning; legislation and issues of access.
Terms: Win | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

OIT 333: Design for Extreme Affordability

Design for Extreme Affordability is a two-quarter project-based course hosted by Stanford's d.school and jointly offered by the Graduate School of Business and the School of Mechanical Engineering. We focus on the development of products and services to improve the lives of the world's poorest citizens. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change lives. Topics include user empathy, product and service design, rapid prototype engineering and testing, social entrepreneurship, business modeling, ethics, partnerships, team dynamics and project management. Since the course was first offered, we have executed 140 projects with 57 partners in 31 emerging and developing economies around the world. Many of the projects have been implemented and are achieving significant social impact. Students have worked on Agricultural, Medical, Water, Sanitation, Energy, Lighting, Nutrition and Education based projects. For further information go to extreme.stanford.edu
Units: 4 | Grading: GSB Letter Graded

OIT 334: Design for Extreme Affordability

Design for Extreme Affordability is a two-quarter project-based course hosted by Stanford's d.school and jointly offered by the Graduate School of Business and the School of Mechanical Engineering. We focus on the development of products and services to improve the lives of the world's poorest citizens. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change lives. Topics include user empathy, product and service design, rapid prototype engineering and testing, social entrepreneurship, business modeling, ethics, partnerships, team dynamics and project management. Since the course was first offered, we have executed 140 projects with 57 partners in 31 emerging and developing economies around the world. Many of the projects have been implemented and are achieving significant social impact. Students have worked on Agricultural, Medical, Water, Sanitation, Energy, Lighting, Nutrition and Education based projects. For further information go to extreme.stanford.edu
Units: 4 | Grading: GSB Letter Graded

OIT 384: Biodesign Innovation: Needs Finding and Concept Creation

In this two-quarter course series ( OIT 384/5), multidisciplinary student teams from medicine, business, and engineering work together to identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their development and implementation into patient care. During the first quarter (winter 2019), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2019), teams screen their ideas, select a lead solution, and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology industry experts and investors. Class sessions include faculty-led instruction and case studies, coa more »
In this two-quarter course series ( OIT 384/5), multidisciplinary student teams from medicine, business, and engineering work together to identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their development and implementation into patient care. During the first quarter (winter 2019), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2019), teams screen their ideas, select a lead solution, and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology industry experts and investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of students launch health technology careers, can be found at http://biodesign.stanford.edu/.
Units: 4 | Grading: GSB Student Option LTR/PF
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints