CS 372: Artificial Intelligence for Precision Medicine and Psychiatric Disorders
Artificial intelligence, specifically deep learning, stands out as one of the most transformative technologies of the past decade. AI can already outperform humans in several computer vision and natural language processing tasks. However, we still face some of the same limitations and obstacles that led to the demise of the first AI boom phase five decades ago. This research-oriented course will first review and reveal the limitations (e.g., iid assumption on training and testing data, voluminous training data requirement, and lacking interpretability) of some widely used AI algorithms, including convolutional neural networks (CNNs), transformers, reinforcement learning, and generative adversarial networks (GANs). To address these limitations, we will then explore topics including transfer learning for remedying data scarcity, knowledge-guided multimodal learning for improving data diversity, out of distribution generalization, attention mechanisms for enabling Interpretability, meta learning, and privacy-preserving training data management. The course will be taught through a combination of lecture and project sessions. Lectures on specialized AI applications (e.g., cancer/depression diagnosis and treatment, AI/VR for surgery, and health education) will feature guest speakers from academia and industry. Students will be assigned to work on an extensive project that is relevant to their fields of study (e.g., CS, Medicine, and Data Science). Projects may involve conducting literature surveys, formulating ideas, and implementing these ideas. Example project topics are but not limited to 1) knowledge guided GANs for improving training data diversity, 2) disease diagnosis via multimodal symptom checking, and 3) fake and biased news/information detection.
Terms: Spr
| Units: 3
Instructors:
Chang, E. (PI)
;
Jin, M. (TA)
Filter Results: