2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: CS348K

CS 348K: Visual Computing Systems

Visual computing tasks such as computational photography, image/video analysis, 3D reconstruction, and real-time 3D graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones, autonomous robots, and large data centers. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel (and heterogeneous) systems that execute and accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level systems students interested in architecting efficient graphics, image processing, and computer vision platforms (both new hardware architectures and domain-optimized programming frameworks) and for students in graphics, vision, and ML that seek to understand throughput computing principles so they can develop scalablenalgorithms that map efficiently these future platforms. Students will perform daily research paper readin more »
Visual computing tasks such as computational photography, image/video analysis, 3D reconstruction, and real-time 3D graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones, autonomous robots, and large data centers. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel (and heterogeneous) systems that execute and accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level systems students interested in architecting efficient graphics, image processing, and computer vision platforms (both new hardware architectures and domain-optimized programming frameworks) and for students in graphics, vision, and ML that seek to understand throughput computing principles so they can develop scalablenalgorithms that map efficiently these future platforms. Students will perform daily research paper readings, complete simple programming assignments, and compete a self-selected term project. Prerequisites: CS 107 or equivalent. Recommended: Parallel computing or computer architecture ( CS 149, EE 282), some background in techniques in either deep learning ( CS 230, CS 231N), computer vision ( CS 231A), digital image processing ( CS 232).
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints