2020-2021 2021-2022 2022-2023 2023-2024 2024-2025
Browse
by subject...
    Schedule
view...
 

1 - 4 of 4 results for: CS236

CS 236: Deep Generative Models

Generative models are widely used in many subfields of AI and Machine Learning. Recent advances in parameterizing these models using neural networks, combined with progress in stochastic optimization methods, have enabled scalable modeling of complex, high-dimensional data including images, text, and speech. In this course, we will study the probabilistic foundations and learning algorithms for deep generative models, including Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and flow models. The course will also discuss application areas that have benefitted from deep generative models, including computer vision, speech and natural language processing, and reinforcement learning. Prerequisites: Basic knowledge about machine learning from at least one of CS 221, 228, 229 or 230. Students will work with computational and mathematical models and should have a basic knowledge of probabilities and calculus. Proficiency in some programming language, preferably Python, required.
Last offered: Autumn 2023

CS 236G: Generative Adversarial Networks

Generative Adversarial Networks (GANs) have rapidly emerged as the state-of-the-art technique in realistic image generation. This course presents theoretical intuition and practical knowledge on GANs, from their simplest to their state-of-the-art forms. Their benefits and applications span realistic image editing that is omnipresent in popular app filters, enabling tumor classification under low data schemes in medicine, and visualizing realistic scenarios of climate change destruction. This course also examines key challenges of GANs today, including reliable evaluation, inherent biases, and training stability. After this course, students should be familiar with GANs and the broader generative models and machine learning contexts in which these models are situated. Prerequisites: linear algebra, statistics, CS106B, plus a graduate-level AI course such as: CS230, CS229 (or CS129), or CS221.
Last offered: Winter 2022

CS 375: Large-Scale Neural Network Modeling for Neuroscience (PSYCH 249)

The last ten years has seen a watershed in the development of large-scale neural networks in artificial intelligence. At the same time, computational neuroscientists have discovered a surprisingly robust mapping between the internal components of these networks and real neural structures in the human brain. In this class we will discuss a panoply of examples of such "convergent man-machine evolution", including: feedforward models of sensory systems (vision, audition, somatosensation); recurrent neural networks for dynamics and motor control; integrated models of attention, memory, and navigation; transformer models of language areas; self-supervised models of learning; and deep RL models of decision and planning. We will also delve into the methods and metrics for comparing such models to real-world neural data, and address how unsolved open problems in AI (that you can work on!) will drive forward novel neural models. Some meaningful background in modern neural networks is highly advised (e.g. CS229, CS230, CS231n, CS234, CS236, CS 330), but formal preparation in cognitive science or neuroscience is not needed (we will provide this).
Terms: Win | Units: 3
Instructors: Yamins, D. (PI)

PSYCH 249: Large-Scale Neural Network Modeling for Neuroscience (CS 375)

The last ten years has seen a watershed in the development of large-scale neural networks in artificial intelligence. At the same time, computational neuroscientists have discovered a surprisingly robust mapping between the internal components of these networks and real neural structures in the human brain. In this class we will discuss a panoply of examples of such "convergent man-machine evolution", including: feedforward models of sensory systems (vision, audition, somatosensation); recurrent neural networks for dynamics and motor control; integrated models of attention, memory, and navigation; transformer models of language areas; self-supervised models of learning; and deep RL models of decision and planning. We will also delve into the methods and metrics for comparing such models to real-world neural data, and address how unsolved open problems in AI (that you can work on!) will drive forward novel neural models. Some meaningful background in modern neural networks is highly advised (e.g. CS229, CS230, CS231n, CS234, CS236, CS 330), but formal preparation in cognitive science or neuroscience is not needed (we will provide this).
Terms: Win | Units: 3
Instructors: Yamins, D. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints