2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 10 of 10 results for: CS231N

CS 25: Transformers United

Since their introduction in 2017, transformers have revolutionized Natural Language Processing (NLP). Now, transformers are finding applications all over Deep Learning, be it computer vision (CV), reinforcement learning (RL), Generative Adversarial Networks (GANs), Speech or even Biology. Among other things, transformers have enabled the creation of powerful language models like GPT 3 and were instrumental in DeepMind's recent Alphafold2, that tackles protein folding. In this seminar, we examine the details of how transformers work, and dive deep into the different kinds of transformers and how they're applied in different fields. We do this through a combination of instructor lectures, guest lectures, and classroom discussions. We will invite people at the forefront of transformers research across different domains for guest lectures. Prerequisites: Basic knowledge of Deep Learning (must understand attention) or CS224N/ CS231N/ CS230. To apply, fill out this form: https://forms.gle/TzAtqjZ4vnjhNMSy7
Terms: Aut | Units: 1
Instructors: Manning, C. (PI)

CS 231N: Deep Learning for Computer Vision

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks. Prerequisites: Proficiency in Python; CS131 and CS229 or equivalents; MATH21 or equivalent, linear algebra.
Terms: Spr | Units: 3-4

CS 329S: Machine Learning Systems Design

This project-based course covers the iterative process for designing, developing, and deploying machine learning systems. It focuses on systems that require massive datasets and compute resources, such as large neural networks. Students will learn about data management, data engineering, approaches to model selection, training, scaling, how to continually monitor and deploy changes to ML systems, as well as the human side of ML projects. In the process, students will learn about important issues including privacy, fairness, and security. Pre-requisites: At least one of the following; CS229, CS230, CS231N, CS224N or equivalent. Students should have a good understanding of machine learning algorithms and should be familiar with at least one framework such as TensorFlow, PyTorch, JAX.
Terms: Win | Units: 3-4
Instructors: Nguyen, H. (PI)

CS 329T: Trustworthy Machine Learning

This course will provide an introduction to state-of-the-art ML methods designed to make AI more trustworthy. The course focuses on four concepts: explanations, fairness, privacy, and robustness. We first discuss how to explain and interpret ML model outputs and inner workings. Then, we examine how bias and unfairness can arise in ML models and learn strategies to mitigate this problem. Next, we look at differential privacy and membership inference in the context of models leaking sensitive information when they are not supposed to. Finally, we look at adversarial attacks and methods for imparting robustness against adversarial manipulation.nnStudents will gain understanding of a set of methods and tools for deploying transparent, ethically sound, and robust machine learning solutions. Students will complete labs, homework assignments, and discuss weekly readings. Prerequisites: CS229 or similar introductory Python-based ML class; knowledge of deep learning such as CS230, CS231N; familiarity with ML frameworks in Python (scikit-learn, Keras) assumed.
Last offered: Spring 2021

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning

Deep learning-based AI systems have demonstrated remarkable learning capabilities. A growing field in deep learning research focuses on improving the Fairness, Accountability, and Transparency (FAccT) of a model in addition to its performance. Although FAccT will be difficult to achieve, emerging technical approaches in this topic show promise in making better FAccT AI systems. In this course, we will study the rigorous computer science necessary foundations for FAccT deep learning and dive into the technical underpinnings of topics including fairness, robustness, interpretability, accountability, and privacy. These topics reflect state-of-the-art research in FAccT, are socially important, and they have strong industrial interest due to government and other policy regulation. This course will focus on the algorithmic and statistical methods needed to approach FAccT AI from a deep learning perspective. We will also discuss several application areas where we can apply these techniques. P more »
Deep learning-based AI systems have demonstrated remarkable learning capabilities. A growing field in deep learning research focuses on improving the Fairness, Accountability, and Transparency (FAccT) of a model in addition to its performance. Although FAccT will be difficult to achieve, emerging technical approaches in this topic show promise in making better FAccT AI systems. In this course, we will study the rigorous computer science necessary foundations for FAccT deep learning and dive into the technical underpinnings of topics including fairness, robustness, interpretability, accountability, and privacy. These topics reflect state-of-the-art research in FAccT, are socially important, and they have strong industrial interest due to government and other policy regulation. This course will focus on the algorithmic and statistical methods needed to approach FAccT AI from a deep learning perspective. We will also discuss several application areas where we can apply these techniques. Prerequisites: Intermediate knowledge of statistics, machine learning, and AI. Qualified students will have taken any one of the following, or their advanced equivalents: CS224N, CS230, CS231N, CS236, CS273B. Alternatively, students who have taken CS229 or have equivalent knowledge can be admitted with the permission of the instructors.
Terms: Spr | Units: 3
Instructors: Landay, J. (PI)

CS 348I: Computer Graphics in the Era of AI

This course introduces deep learning methods and AI technologies applied to four main areas of Computer Graphics: rendering, geometry, animation, and imaging. We will study a wide range of problems on content creation for images, shapes, and animations, recently advanced by deep learning techniques. For each problem, we will understand its conventional solutions, study the state-of-the-art learning-based approaches, and critically evaluate their results as well as the impacts to researchers and practitioners in Computer Graphics. The topics include differentiable rendering/neural rendering, BRDF estimation, texture synthesis, denoising, procedural modeling, view synthesis, colorization, style transfer, motion synthesis, differentiable physics simulation, and reinforcement learning. Through programming projects and homework, students who successfully complete this course will be able to use neural rendering algorithms for image manipulation, apply neural procedural modeling for shape and scene synthesis, exploit data-driven methods for simulating physical phenomena, and implement policy learning algorithms for creating character animation. Recommended Prerequisites: CS148, CS231N
Terms: Aut | Units: 3-4

CS 375: Large-Scale Neural Network Modeling for Neuroscience (PSYCH 249)

Introduction to designing, building, and training large-scale neural networks for modeling brain and behavioral data, including: deep convolutional neural network models of sensory systems (vision, audition, somatosensation); variational and generative methods for neural interpretation; recurrent neural networks for dynamics, memory and attention; interactive agent-based deep reinforcement learning for cognitive modeling; and methods and metrics for comparing such models to real-world neural data. Attention will be given both to established methods as well as cutting-edge techniques. Students will learn conceptual bases for deep neural network models and will also implement learn to implement and train large-scale models in Tensorflow using GPUs. Requirements: Fluency in Unix shell and Python programming; familiarity with differential equations, linear algebra, and probability theory; priori experience with modern machine learning concepts (e.g. CS229) and basic neural network training tools (eg. CS230 and/or CS231n). Prior knowledge of basic cognitive science or neuroscience not required but helpful.
Last offered: Autumn 2019

CS 422: Interactive and Embodied Learning (EDUC 234A)

Most successful machine learning algorithms of today use either carefully curated, human-labeled datasets, or large amounts of experience aimed at achieving well-defined goals within specific environments. In contrast, people learn through their agency: they interact with their environments, exploring and building complex mental models of their world so as to be able to flexibly adapt to a wide variety of tasks. One crucial next direction in artificial intelligence is to create artificial agents that learn in this flexible and robust way. Students will read and take turns presenting current works, and they will produce a proposal of a feasible next research direction. Prerequisites: CS229, CS231N, CS234 (or equivalent).
Terms: Win | Units: 3
Instructors: Haber, N. (PI)

EDUC 234A: Interactive and Embodied Learning (CS 422)

Most successful machine learning algorithms of today use either carefully curated, human-labeled datasets, or large amounts of experience aimed at achieving well-defined goals within specific environments. In contrast, people learn through their agency: they interact with their environments, exploring and building complex mental models of their world so as to be able to flexibly adapt to a wide variety of tasks. One crucial next direction in artificial intelligence is to create artificial agents that learn in this flexible and robust way. Students will read and take turns presenting current works, and they will produce a proposal of a feasible next research direction. Prerequisites: CS229, CS231N, CS234 (or equivalent).
Terms: Win | Units: 3
Instructors: Haber, N. (PI)

PSYCH 249: Large-Scale Neural Network Modeling for Neuroscience (CS 375)

Introduction to designing, building, and training large-scale neural networks for modeling brain and behavioral data, including: deep convolutional neural network models of sensory systems (vision, audition, somatosensation); variational and generative methods for neural interpretation; recurrent neural networks for dynamics, memory and attention; interactive agent-based deep reinforcement learning for cognitive modeling; and methods and metrics for comparing such models to real-world neural data. Attention will be given both to established methods as well as cutting-edge techniques. Students will learn conceptual bases for deep neural network models and will also implement learn to implement and train large-scale models in Tensorflow using GPUs. Requirements: Fluency in Unix shell and Python programming; familiarity with differential equations, linear algebra, and probability theory; priori experience with modern machine learning concepts (e.g. CS229) and basic neural network training tools (eg. CS230 and/or CS231n). Prior knowledge of basic cognitive science or neuroscience not required but helpful.
Last offered: Autumn 2019
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints